The Finite Element Method and the Analysis of Systems with Uncertain Properties

Prof. Dr. Michael Havbro Faber
Swiss Federal Institute of Technology
ETH Zurich, Switzerland
=1/ Swiss Federal Institute of Technology

Contents of Today's Lecture

- Some preliminary considerations
- An overview of the lecture
- Introduction to the use of finite element
- Physical problem, mathematical modeling and finite element solutions
- Finite elements as a tool for computer supported design and assessment
- Basic mathematical tools (vectors, tensors and matrix calculus)

EII Swiss Federal Institute of Technology

Preliminary considerations

- Aspects of engineering modelling

In Swiss Federal Institute of Technology

Preliminary considerations

- Aspects of engineering modelling

Preliminary considerations

- Aspects of engineering modelling

For given decisions

Uncertainties

Preliminary considerations

Choice of scale

- Indicators of the state of the real world

EII Swiss Federal Institute of Technology

Preliminary considerations

- Aspects of engineering modelling

Choice of scale - Indicators of the state of the real world

패 Swiss Federal Institute of Technology

An overview of the lecture

Topic

Introduction and description of course material;
Introduction to the use of finite elements

- Physical problem, mathematical modelling and finite element solutions
- Finite elements as a tool for computer supported design and assessment
- Basic mathematical tools (vectors, tensors and matrix calculus)
Basic concepts of engineering analysis
- Solution of mathematical models of discrete and continuous systems
Formulation of the method of finite elements
- Formulation of the displacement based finite element method and (general) convergence of results

Formulation and calculation of isoparametric finite element matrixes

- Truss element
- Continuum elements - triangular elements

Formulation and calculation of isoparametric finite element matrixes

- Continuum elements - square elements
- (Detailed) Convergence considerations

Formulation and calculation of isoparametric finite element matrixes

- Element matrixes in global coordinates
- Displacement/pressure related elements for incompressible media
Formulation and calculation of isoparametric finite element matrixes
- Formulation of structural elements (beam elements and axial-symmetrical shell elements)
Formulation and calculation of isoparametric finite element matrixes
- Formulation of structural elements (plate and general shell elements)

Formulation and calculation of isoparametric finite element matrixes

- Numerical integration and implementation of a finite element computer code

Solution of static finite element problems $\quad-\quad$ The LDL- solution
Introduction to reliability analysis
Implicit performance functions and introduction to stochastic
FEM (SFEM)

SFEM for linear static problems
SFEM for spatial variability problems

Introduction to the use of finite element

- Physical problem, mathematical modeling and finite element solutions
- we are only working on the basis of mathematic models !
- choice of mathematical model is crucial!
- mathematical models must be reliable and effective

Introduction to the use of finite element

- Reliability of a mathematical model

The chosen mathematical model is reliable if the required response is known to be predicted within a selected level of accuracy measured on the response of a very comprehensive mathematical model

- Effectiveness of a mathematical model

The most effective mathematical model for the analysis is surely that one which yields the required response to a sufficient accuracy and at least costs

Introduction to the use of finite element

- Example

Complex physical problem modeled by a simple mathematical model

=1Н Swiss Federal Institute of Technology

Introduction to the use of finite element

- Example

Detailed reference model - 2-D plane stress model - for FEM analysis

$$
\left.\begin{array}{l}
\frac{\partial \tau_{v}}{\partial x}+\frac{\partial \tau_{v y}}{\partial y}-0 \\
\frac{\partial \tau_{p}}{\partial x}+\frac{\partial \tau_{p y}}{\partial y}=0
\end{array}\right\} \text { in domain of bracket }
$$

$\tau_{n e}=0, \tau_{v}=0$ on surfaces except at point B and at imposed zero displacements
Stress-strain relation (see Table 4.3):

$$
\left[\begin{array}{l}
\tau_{n} \\
\tau_{n \gamma} \\
\tau_{n v}
\end{array}\right]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & (1-v) / 2
\end{array}\right]\left[\begin{array}{l}
\epsilon_{u} \\
\epsilon_{\eta y} \\
\gamma_{v y}
\end{array}\right]
$$

$$
E=\text { Young's modulus, } y=\text { Poisson's ratio }
$$

Strain-displacement relations (see Section 4.2):

$$
\epsilon_{v r}=\frac{\partial u}{\partial x} ; \quad \epsilon_{v y}=\frac{\partial \nu}{\partial y} ; \quad \gamma_{v y}=\frac{\partial u}{\partial y}+\frac{\partial \nu}{\partial x}
$$

(c) Plane stress model

Introduction to the use of finite element

- Example

Comparison between simple and more refined model results

$$
\begin{aligned}
M & =W L \\
& =27,500 \mathrm{~N} \mathrm{~cm} \\
\left.S\right|_{\text {mow }} & =\frac{1}{3} \frac{W(L}{E I} \frac{\left.r_{w}\right)^{3}}{E I}+\frac{W\left(L+F_{w}\right)}{A G} \\
& =0.053 \mathrm{~cm}
\end{aligned}
$$

$$
\left.8\right|_{\text {mhal }}=0.004 \mathrm{~cm}
$$

Reliability and efficiency may be quantified !

패표 Swiss Federal Institute of Technology

Introduction to the use of finite element

- Observations

Choice of mathematical model must correspond to desired response measures

The most effective mathematical model delivers reliable answers with the least amount of efforts

Any solution (also FEM) of a mathematical model is limited to information contained in the model - bad input - bad output

Assessment of accuracy is based on comparisons with results from very comprehensive models - however, in practice often based on experience

Introduction to the use of finite element

- Observations

Some times the chosen mathematical model results in problems such as singularities in stress distributions

The reason for this is that simplifications have been made in the mathematical modeling of the physical problem

Depending on the response which is really desired from the analysis this may be fine - however, typically refinements of the mathematical model will solve the problem

IH Swiss Federal Institute of Technology

Introduction to the use of finite element

- Finite elements as a tool for computer supported design and assessment

FEM forms a basic tool framework in research and applications covering many different areas

- Fluid dynamics
- Structural engineering
- Aeronautics
- Electrical engineering - etc.

II Swiss Federal Institute of Technology

Introduction to the use of finite element

- Finite elements as a tool for computer supported design and assessment

The practical application necessitates that solutions obtained by FEM are reliable and efficient
however
also it is necessary that the use of FEM is robust - this implies that minor changes in any input to a FEM analysis should not change the response quantity significantly

Robustness has to be understood as directly related to the desired type of result - response

Basic mathematical tools

- Vectors and matrixes $\mathbf{A x}=\mathbf{b}$

$$
\mathbf{A}=\left[\begin{array}{ccccc}
a_{11} & \cdots & a_{1 i} & & a_{1 n} \\
\vdots & \ddots & & & \\
a_{i 1} & & a_{i i} & & \vdots \\
\vdots & & & \ddots & \\
a_{m 1} & & \cdots & & a_{m n}
\end{array}\right]
$$

\mathbf{A}^{T} is the transpose of \mathbf{A}
if $\mathbf{A}=\mathbf{A}^{\mathbf{T}}$ there is
$m=n$ (square matrix)
and $a_{i j}=a_{j i}$ (symmetrical matrix)
$\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{m}\end{array}\right], \mathbf{b}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right]$

$$
\mathbf{I}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right] \text { is a unit matrix }
$$

Basic mathematical tools

- Banded matrixes

Symmetric banded matrixes
$a_{i j}=0$ for $j>i+m_{\mathrm{A}}, 2 m_{\mathrm{A}}+1$ is the bandwidth
$\mathbf{A}=\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0 \\ 2 & 3 & 4 & 1 & 0 \\ 1 & 4 & 5 & 6 & 1 \\ 0 & 1 & 6 & 7 & 4 \\ 0 & 0 & 1 & 4 & 3\end{array}\right]$

$$
m_{\mathrm{A}}=2
$$

=1H Swiss Federal Institute of Technology

Basic mathematical tools

- Banded matrixes and skylines

=1H Swiss Federal Institute of Technology

Basic mathematical tools

- Matrix equality

$$
\begin{aligned}
& \mathbf{A}(m \times p)=\mathbf{B}(n \times q) \text { if and only if } \\
& m=n \text { and } p=q \text { and } \\
& a_{i j}=b_{i j}
\end{aligned}
$$

Basic mathematical tools

- Matrix addition
$\mathbf{A}(n \times q)$ and $\mathbf{B}(n \times q)$ can be added if and only if
$m=n$ and $p=q$ and
$\mathbf{C}=\mathbf{A}+\mathbf{B}$
$c_{i j}=a_{i j}+b_{i j}$

III Swiss Federal Institute of Technology

Basic mathematical tools

- Matrix multiplication with a scalar

A matrix \mathbf{A} is multiplied by a scalar c by multiplying all elements of \mathbf{A} with c
$\mathbf{B}=c \mathbf{A}$
$b_{i j}=c a_{i j}$

Basic mathematical tools

- Multiplication of matrixes

Two matrixes $\mathbf{A}(p \times m)$ and $\mathbf{B}(n \times ` q)$ can be multiplied only if $m=n$

$$
\mathbf{C}=\mathbf{B A}
$$

$$
c_{i j}=\sum_{r=1}^{m} a_{i r} b_{r j}, \mathbf{C}(p \times q)
$$

=1/ Swiss Federal Institute of Technology

Basic mathematical tools

- Multiplication of matrixes

The commutative law does not hold, i.e.
$\mathbf{A B} \neq \mathbf{B A}$, unless \mathbf{A} and \mathbf{B} commute

The distributive law holds, i.e.
$\mathbf{E}=(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$

The associative law holds, i.e.
$\mathbf{G}=(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})=\mathbf{A B C}$
$\mathbf{A B}=\mathbf{C B}$, does not imply that $\mathbf{A}=\mathbf{C}$ however does hold for special cases (e.g. for $\mathbf{B}=\mathbf{I}$)

Special rule for the transpose of matrix products
$(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$

Basic mathematical tools

- The inverse of a matrix

The inverse of a matrix \mathbf{A} is denoted \mathbf{A}^{-1}

If the inverse matrix exist then there is:

$$
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}
$$

the matrix \mathbf{A} is said to be non-singular

The inverse of a matrix product:
$(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$

II Swiss Federal Institute of Technology

Basic mathematical tools

- Sub matrixes

A matrix A may be sub divided as:

$$
\mathbf{A}=\left[\begin{array}{c:cc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
\hdashline a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{ll}
\bar{a}_{11} & \bar{a}_{12} \\
\bar{a}_{21} & \bar{a}_{22}
\end{array}\right]
$$

Basic mathematical tools

- Trace of a matrix

The trace of a matrix $\mathbf{A}(n \times n)$ is defined through:
$\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i i}$

III Swiss Federal Institute of Technology

Basic mathematical tools

- The determinant of a matrix

The determinant of a matrix is defined through the recurrence formula
$\operatorname{det}(\mathbf{A})=\sum_{i=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} \mathbf{A}_{1 j}$
where $\mathbf{A}_{1 j}$ is the ($\left.n-1\right) \times(n-1)$ matrix obtained by eliminating the $1^{\text {st }}$ row and the $j^{\text {th }}$ column from the matrix \mathbf{A} and where there is

$$
\text { if } \mathbf{A}=\left[a_{11}\right], \operatorname{det} \mathbf{A}=a_{11}
$$

Basic mathematical tools

- The determinant of a matrix

It is convenient to decompose a matrix \mathbf{A} by the socalled Cholesky decomposition
$\mathbf{A}=\mathbf{L D L}^{T}$
where \mathbf{L} is a lower triangular matrix with all diagonal elements equal to 1 and \mathbf{D} is a diagonal matrix with

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]
$$ components $d_{i i}$ then the determinant of the matrix \mathbf{A} can be writtes as

$\operatorname{det} \mathbf{A}=\prod_{i=1}^{n} d_{i i}$

