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Matrices

Revision:

Positive-definiteness: vAv > 0 for all vectors v (semi-positive definite: v/Av >0 )

(analogous: negative-definite)
Bandwidth of a matrix A:

p1+py+ 1, wherea;=0forj> i+p,ori>j+p,

Skyline of a matrix:

forj,j=1,...n: m; =1 with a; = Ofori<i

Column heights of a matrix: h; =i-m,; fori=1,....n

(maximum column height = half-bandwidth my)

Pi1=2, pr=1
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Gauss elimination

— Carl F. Gauss, ca. 1850,
in the framework of the solution of linear systems of equations

In general:
Solve Ax=b for x

e.g. simply supported

beam with 4 transl. dofs
where A 1s a matrix of coefficients,

. R2
x 1s the vector of unknowns, | \ !

b is the right-hand side vector A

Solve KU=R for U
where K 1s the stiffness matrix,

U is the displacement vector, —— Y

R 1s the load vector

In the context of finite element problems: [ 5 -4 1 o‘ ‘ L’.] H
|
0



Gauss elimination

— In a Gauss elimination, we reduce the matrix of coefficients to an upper triangular form, by
a successive addition of multiples of the i row (i = 1,...,n — 1) to the remaining n — i rows

jG=i+1,...,n).
S ! ? E{'q ? r2 =12 +4/5 rl;
| —a _E 4 L’i =10 r3=r3+(-1/5)rl;
0 1 -4 s5||lof Lo rd =rd;
s —4 1 o] fe] [o] r3=r3+16/14 r2;
0: ¥ & | ] |1 — ) .
I SN rd = rd + (-5/14) r2;
o 1 -4 5| |w o]
5 -4 1 G][vs 0
o -5 aflw| | rd = rd + 20/15 r3;
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Gauss elimination

— The result is an upper-triangular matrix which we can solve for the unknowns U,

in the order U ,U, ,,...,U,.

5 -4 1 0

0 14/5 -16/5 1

0 0 15/7 -20/7

0 0 0 5/6
Note:
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e After step i (i.e. after the full addition procedure involving multiples of row i),
the lower right (n-i) X (n-i) submatrix is symmetric — storage implications

 Solution based on non-vanishing i diagonal element of coefficient matrix in

step i.

» The operations on the coefficient matrix are independent of the right-hand side

vector.

* Any desirable order of eliminations may be chosen.



Physical interpretation of Gauss elimination

— A physical interpretation of the operations performed in a Gauss elimination:

Example:

symmetric
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First equation: 5 U, -4 U,+ U,;=0 & U,=4/5U,-1/5U;
Elimination of U, from equations 2, 3 and 4 yields the lower right 3 x 3 submatrix which we get after
the first step of the Gauss elimination of the original matrix:

1

14/5 -16/5
-16/5 29/5

4

1
4
5

Stiffness matrix corresponding to
beam after release of dof 1.
( dof 1*statically condensed out™)

..... 5/6 1s stiffness matrix of beam after release of dofs 1, 2 and 3 (cf. Gauss elimination: final upper triangular matrix).



Physical interpretation of Gauss elimination

Figure 8.4 Experimental results of forces in clamps due 0 unit displacements with clamp
1 nat present

!

76 A3 1.0

Figure 8.6 Experimental results of forces in clamps due w0 unit displacement with clamps
1. 2. and 3 not present,



Physical interpretation of Gauss elimination

* We get a total of n stiffness matrices of decreasing order (n, n-1,..., 2, 1), each describing
a set of n-i degrees of freedom (i =0, 1,...,n-1) of the same physical system.

* [f R#0, then we also establish the load vectors pertaining to these stiffness matrices.

» The physical picture suggests that the diagonal elements remain positive during
the Gauss elimination: Stiffness should be positive; a non-positive diagonal element
implies an unstable structure.
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The LDLZ-solution

The successive matrix operations during a Gauss elimination can be cast

into a general form, which leads, likewise, to the reduction of K to an upper
triangular form, S,

i Ny -lyr _
Ln_l oooooo L2 Ll K — S
where
1
' (i)
L= . , k..
! . with l I+l
i+, k(i)
i w i Y,
'li+2,i v
Gauss factors for the matrix
b 1 L' . LL'K
— —_— l 1 OOOOOO 2 1



The LDLZ-solution

L' ... .LL'K=S
Solve for K:
K=LL,..L _S
where L=
Hence,
K=LS




The LDLZ-solution

K=LS

Now, write S = DS where dl.j:

K =LDL'

In practice:

V=L"R

<LV=R

0.8,

gy

U=(L) D'V <DL'U=V

hence K = LDS and since kl.j:

k..

Ji’

S:LT, SO

Example: Compute L;!,i=1,2,3,L,S, D and V from

5 4 1 0] 0]
|46 4 and rR|!
1 -4 6 -4 0

0 1 -4 5 10




The LDLZ-solution

Recall the Gauss multiplication factors — they enter into L-! ,i =1, 2, 3:

Step 1:
r2=r2+4/5ril;

r3=r3+ (-1/5) rl;
r4 =rd;

1
Lo 45
L' =
~1/5 0
00

(i.e. the i column of L;! contains the multipliers of the i'" step)

L=LL,L,=

1
—4/5
1/5

Step 2:
r3=r3+ 8/7 r2;

rd4 =r4 + (-5/14) r2;

L) =

1
—8/77
5/14

1

0 1

0 8/7 1
0 -5/14 0 1

1
—4/3 1

Step 3:

rd =r4 + 4/3 r3;

1
Lo
L =
0 0
0 0

1
473 1




The LDLZ-solution

Recall the pivots in the Gauss elimination — they enter into S (i.e. reduced K):

5 —4 1 0 —>  Firstrow of K
14/5 -=16/5 1 —>  Second row of K after step 1

15/7 —=20/7 | — Third row of K after step 2

5/6 —  Fourth row of K after step 3

For the matrix D: d;;= é;-jsij

5
14/5
1577
5/6

V is the right-hand side after the reduction of K to upper triangular form, i.e.

v=[0 1 8/7 7/6]



The LDLZ-solution

Practical issues (1)

Simultaneous computation of V and L.

L and V not computed from scratch, but by modifications of K and R.

K is symmetric, banded and positive-definite; the two former properties

permit the compact storage in a 1-D Array, complemented by a 1-D address

array:
5 4
-4 6
K =
1 -4
0 1
a=[5 6
b=[1 2 4 7]

~4 6

1 0

4 1

6 —4

4 5
-4 1 5

—4 1] non-zero elements of upper half and diagonal

array indices of the diagonal elements in a
(here: Fortran-type indexing!)



The LDLZ-solution

Algorithm:

* Columnwise calculation of /;; and d; for j = 2,...,n, starting with d, ;= k:

]

i—1
8ij Zkij_r:Zm:lrigrj i=m;+1,..,j-1 Here: [;; denotes

, an element of L7
where m = skyline of K, m,, = max{m,, m}

now: decomposition of K to the factors D and L (or: L)

8ij
I, =

12

-1
dy=k;— erjgrj

[=m, +1,..., j—1



The LDLZ-solution

Algorithm:
-1
o compute U via V: U= (LT ) D'V

i—1
V.=R - Zln,Vr Starting with V, = R, compute V. fori=2,...,n

now backsubstitution: first, compute V=DV

Get U, =V and
then get (successively) for U, (i = n,...,2)
‘Z(i—l) :‘Z(i)_lriUi r=mi,...,i—1

—y D
Ui—l - Vi—l

in the (n - i + 1)™ evaluation, i.e. in the evaluation of U,



The LDLZ-solution

Practical issues (2)

e The sums over the products [
skyline

;8yand [ g .do not involve terms outside the

(“skyline reduction method”, “column reduction method”, “active column solution”)
e Storage: K as compact 1-D array

* [;replaces g; a=[5 6 -4 6 -4 1 5 -4 1] b=[l 2 4 7]

* djreplaces k;
— a= [dll d22 112 d33 123 ll3 d44 l34 124]

=[R R, R, R
V. replaces R, c=lR R KR

. Vk(j) replaces Vk ——— c= [‘71(]') ‘72(1) ‘73(1') ‘74(]')]

* Effective, because of skyline reduction, but the sums over the products / ¢ and

l,:8,;can still involve zero terms. “Sparse solvers” skip the vanishing terms.
* Active column solutions: re-order the equations to reduce column heights

e Sparse solvers: re-order the equations to eliminate operations on elements equal
to zero



The LDLZ-solution

Example:
-, 5 "
3 =2 0
K= 5 -3 0 —m=
symm. 10 4
L 10_
First, get D and L7:

d;;=2;now loopoverall j,j=2,...,5

J=2gn=kp=2 g .=k,

l“ j i eoey j
112=glz/d11=-2/2=—1 Y d . j ’

djj =kjj_ lrjgrj
dy=kyp-18,=3-(-D(-2)=1 ;

_ W N = =




The LDLZ-solution

Example (cont.): N
Jj= 3:g23=k23=—2 gm4,j:km4,j 2 -1 -1
1 -2 0
_ 8 _— :
by=gyldy=21=2 =g i=mitle j=l . K= 1 -3 0
| 10 4
d.=k.— > 1.g.
dy3 = k33— 13823 =5 - (-2)(-2) = 1 L ; 995 i 10
J
) _ _
j: 4. g34=k34=—3 g :km.,j 2 _1 —1
I 2 0
_ 8 _— :
Ly = 834/d33 =-3/1=-3 i T a, ‘TmitlheJol > K= 1 -3 0
_ 1 4
d.=k.— > 1.g.
dys=kyy— 134834 =10-(-3)(-3) =1 “# ; 587 | 10 |




The LDLZ-solution

Example (cont.):

J=5815=kis=-1
825 = kys —l1815=0—-(-D(-1) =-1 P
835 = k35 —lr38,5=0—(-2)(-1) =-2 Tl
845 = kys — 34835 =4 = (-3)(-2) = -2

lis=gsld; =-1/2 ;= 8 _ .
125=g25/d22=_1/1=_1 ij_dii l=mj+1 ..... ]—1
L5 = 835/dy3 = -2/1 = -2

lys = gusldyy = -2/1 = -2

j-1
d;=k;~ _Zl,jg,j

r=m;

dss =kss— 115815 1)s 825 = 135835 — 145845 = 10 = (-172)(-1) = (-D)(-1) = (-2)(-2) — (-2)(-2) = 1/2

IS _

2 -1 -1/2
) -1
K = 1 -3 2
1 2

i 1/2 |




The LDLZ-solution

Example (cont.):
Now, get the solution U of KU=R with R=[0 1 0 0 0]”

Vi=R,=0 V=R - IZ_E LV forward
Vo=R,— 1, Vi=1-0=1 e reduction
Vi=Ry; =1 V,=0-(-2)(1)=2

Vi=Ry— 13, V53=0-(-3)(2)=6

Vs=Rs— 115V, = s V,— s Va— 115 V,=0-0-(-D)(1) - (-2)(2) = (-2) (6) = 17

Hence: V=[012617]Tand V=D'V=[0 1 2 6 34]

backsubstitution

V9=V U =V,=34
V—r(i—n — ‘/_r(i) -1 .U,
i=5 VP =vY -l U =0-(-1/2)(34) =17 F= e, i—1
VY=V - U, =1-(-1)(34) =35
VO =V - LU, =2-(-2)(34) =70
VO =V -1 U, =6—(-2)(34) =74

U4=\74(4)=74 R=[17 35 292 74 347



The LDLZ-solution

Example (cont.): v@" =y ©® _]y

ri i

i=4 VI =VY LU, =70-(-3)(74) =292
U, =V,” =292

i=3 VP=VP-1U,=35-(-2)(292)=619
U,=V,” =619

i=2 VO=V®-1 U, =17-(-1)(619) =636
U =V'" =636

1

r=m.,..., i—1

R=[17 35 292 74 34]

R=[17 619 292 74 34]

R=U=[636 619 292 74 34]"



Properties of K

e for my =i—m,, for all i > m,;: LDLT decomposition requires %2 nm,?* operations,
reduction and backsubstitution requires 2nm, operations;
in general: Y2 X(i — m,)> + 2 X(i — m,) operations

e stiffness matrix of an element with suppressed rigid-body modes is positive-definite

o if K is positive-definite, then the matrix K" (matrix of the r" associated constraint
problem) is also positive-definite (Sturm sequence property) and all d; > 0

p(A)=det (K—I) = detK = det Ldet Ddet L’ =I1d, >0
KO = LODOLOT  i=1,..,n—1
ﬂ,l(i)>() i=1,....,.n—1
d,‘,’ >O i=1,...,n

« if K is positive-semidefinite, d,, = 0if A4"™ =0

*if d,, =0 row interchanges can establish d,, # O unless k =n—m, + 1
m : multiplicity of A=0



Error estimate

Due to truncation and roundoff errors, we solve (K + JK) (U+ 0U) = R rather than KU = R.

oU=-K'6KU
A large condition ” 5U|| ” 5K||
number implies < d(K)L_I : _ i
high probability ||U| con ( ) ”K” with ~ cond (K) - A
of erroneous solutions.
In practice: Approx., based on upper bound lIKIl and lower bound from inverse iteration cond (K)= /|1|1,1i|,|,
| oKl
For t-bit double precision: H H
oU
The number precision in the solution U, s, with H =107 is thus s2t-log,, (COIld (K ))
cond(K) s (r=16)
10.00 15
100.00 14
1000.00 13

10000.00 12



Error estimate

» Bathe, page 749: Summary on truncation and roundoff errors in solving KU = R

1. Both types of errors can be expected to be large if structures with widely varying
stiffness are analyzed. Large stiffness differences may be due to different material
moduli, or they may be the result of the finite element modeling used, in which case
a more effective model can frequently be chosen. This may be achieved by the use of
finite elements that are nearly equal in size and have almost the same lengths in each
dimension, the use of master-slave degrees of freedom, i.e., constraint equations (see
Section4.2.2 and Example 8.19), and relative degrees of freedom (see Example 8.20).

2. Since truncation errors are most significant, to improve the solution accuracy it is
necessary to evaluate both the stiffness matrix K and the solution of KU = R in
double precision. It is not sufficient (a) to evaluate K in single precision and then solve
the equations in double precision (see Example 8.18), or (b) to evaluate K in single
precision, solve the equations in single precision using a Gauss elimination procedure,
and then iterate for an improvement in the solution employing, for example, the
Gauss-Seidel method.



Related methods

* Cholesky factorization

e Static condensation

* Substructure analysis

e Frontal solution
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