
Solution of static finite element problems:
the LDLT-solution

FEM seminar talk
Maria Reif

January 10th 2007



• Gauss elimination

• Physical interpretation of Gauss elimination in the context of finite element 
problems

• The LDLT-solution:  
– Introduction to the procedure
– Algorithm used in computational implementations

• Properties of K

• Error considerations 

• Related methods 

Outline



• Revision:

Positive-definiteness: vTAv > 0 for all vectors v (semi-positive definite: vTAv ≥ 0 )
(analogous: negative-definite)

Bandwidth of a matrix A:
p1 + p2 + 1, where aij = 0 for j > i + p2 or i > j + p1

Skyline of a matrix: 
for j, j = 1,...,n: mj = i’ with aij = 0 for i < i’                      

mT = [1 1 2 3 4 5 6]

Column heights of a matrix: hi = i - mi for i = 1,...,n
hT = [0 1 1 1 1 1 1]

(maximum column height = half-bandwidth mK)
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6540000
3219000
0876500
0043210
0009876
0000543
0000021

p1=2, p2=1



In general:
Solve Ax=b for x
where A is a matrix of coefficients, 

x is the vector of unknowns,
b is the right-hand side vector 

In the context of finite element problems:
Solve KU=R for U
where K is the stiffness matrix, 

U is the displacement vector,
R is the load vector 

Gauss elimination

e.g. simply supported
beam with 4 transl. dofs

K U R

R2

U1 U2 U3 U4

→ Carl F. Gauss, ca. 1850, 
in the framework of the solution of linear systems of equations



→ In a Gauss elimination, we reduce the matrix of coefficients to an upper triangular form, by 
a successive addition of multiples of the ith row (i = 1,…,n – 1) to the remaining n – i rows 
j (j = i + 1,…,n).

Gauss elimination

r2 = r2 + 4/5 r1;
r3 = r3 + (-1/5) r1; 
r4 = r4;

r3 = r3 + 16/14 r2;
r4 = r4 + (-5/14) r2;

r4 = r4 + 20/15 r3;



→ The result is an upper-triangular matrix which we can solve for the unknowns Ui
in the order Un,Un-1,…,U1.

U4

U3

U2

U1

Gauss elimination

5/6000

-20/715/700

1-16/514/50

01-45

7/6

8/7

1

0

Note:
• After step i (i.e. after the full addition procedure involving multiples of row i), 

the lower right (n-i) x (n-i) submatrix is symmetric → storage implications
• Solution based on non-vanishing ith diagonal element of coefficient matrix in 

step i. 
• The operations on the coefficient matrix are independent of the right-hand side 

vector.
• Any desirable order of eliminations may be chosen. 



U4

U3

U2

U1

Physical interpretation of Gauss elimination

5

-46
symmetric

1-46

01-45

0

0

0

0

→A physical interpretation of the operations performed in a Gauss elimination:

Example:

First equation: 5 U1 – 4 U2 + U3 = 0   ⇔ U1 = 4/5 U2 – 1/5 U3
Elimination of  U1 from equations 2, 3 and 4 yields the lower right 3 x 3 submatrix which we get after
the first step of the Gauss elimination of the original matrix:

5-41

-429/5-16/5

1-16/514/5

U4

U3

U2

0

0

0 Stiffness matrix corresponding to 
beam after release of  dof 1. 
( dof 1“statically condensed out”)

….. 5/6 is stiffness matrix of beam after release of dofs 1, 2 and 3 (cf. Gauss elimination: final upper triangular matrix).



Physical interpretation of Gauss elimination



Physical interpretation of Gauss elimination

• We get a total of n stiffness matrices of decreasing order (n, n-1,…, 2, 1), each describing 
a set of n-i degrees of freedom (i = 0, 1,...,n-1) of the same physical system.

• If R≠0, then we also establish the load vectors pertaining to these stiffness matrices.

• The physical picture suggests that the diagonal elements remain positive during
the Gauss elimination: Stiffness should be positive; a non-positive diagonal element
implies an unstable structure.

Here, after release of dofs U1, U2 and U3 the
last diagonal element (i.e. the stiffness at dof U4)
is zero.



The LDLT-solution

The successive matrix operations during a Gauss elimination can be cast
into a general form, which leads, likewise, to the reduction of K to an upper
triangular form, S,

1 1 1
1 2 1......n

− − −
− =L L L K S

where

Li
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.-li+1,i

1

.

.

.

1

( )
,

, ( )

i
i j i

i j i i
ii

k
l

k
+

+ =with

Gauss factors for the matrix  

1 1 1
1 2 1......i

− − −
−L L L K



The LDLT-solution

Solve for K:

1 1 1
1 2 1......n

− − −
− =L L L K S

where Li =

.…

1ln,i

.li+2,i

.li+1,i

1
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1 2 1...... n−=K L L L S

Hence, 

=K LS

with 1 2 1...... n−=L L L L = 
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1..

.l42l41

.l32l31
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The LDLT-solution

=K LS

Now, write =S DS� where dij=δijsij , hence =K LDS� and since kij=kji ,
T=S L� , so

T=K LDL

In  practice:
1−=V L R

( ) 1 1T − −=U L D V

⇐ =LV R

T⇐ =DL U V

Example: Compute Li
-1, i = 1, 2, 3 , L, S, D and V from 

5 4 1 0
4 6 4 1

1 4 6 4
0 1 4 5

−� �
� �− −� �=
� �− −
� �−� �

K

0
1
0
0

� �
� �
� �=
� �
� �
� �

Rand



The LDLT-solution

Recall the Gauss multiplication factors – they enter into Li
-1 , i = 1, 2, 3:

Step 1:
r2 = r2 + 4/5 r1;
r3 = r3 + (-1/5) r1; 
r4 = r4;

Step 2:
r3 = r3 + 8/7 r2;
r4 = r4 + (-5/14) r2;

Step 3:
r4 = r4 + 4/3 r3;

1
1

4 / 5
1/ 5
0

1
1
0 1
0 0 1

−
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−
L 1

2 8 / 7
5 /

1
0 1
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0 0 114
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L 1
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1
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0 0 1
0 0 13

−

� �
� �
� �=
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L

1 2 3

1
4 / 5 1

1/ 5 8 / 7 1
0 5 /14 4 / 3 1

� �
� �−� �= =
� �−
� �−� �

L L L L

(i.e. the ith column of Li
-1 contains the multipliers of the ith step)



The LDLT-solution

Recall the pivots in the Gauss elimination – they enter into S (i.e. reduced K):

5 4 1 0
14 / 5 16 / 5 1

15 / 7 20 / 7
5 / 6

−� �
� �−� �=
� �−
� �
� �

S

First row of K

Second row of K after step 1

Third row of K after step 2

Fourth row of K after step 3

For the matrix D: dij=δijsij

5
14 / 5

15 / 7
5 / 6

� �
� �
� �=
� �
� �
� �

D

V is the right-hand side after the reduction of K to upper triangular form, i.e.

[ ]0 1 8 / 7 7 / 6
T=V



The LDLT-solution

Practical issues (1)
• Simultaneous computation of V and Li

-1.
• L and V not computed from scratch, but by modifications of K and R.
• K is symmetric, banded and positive-definite; the two former properties

permit the compact storage in a 1-D Array, complemented by a 1-D address 
array: 

5 4 1 0
4 6 4 1

1 4 6 4
0 1 4 5

−� �
� �− −� �=
� �− −
� �−� �

K

]145146465[ −−−=a

]7421[=b

non-zero elements of upper half and diagonal 

array indices of the diagonal elements in a
(here: Fortran-type indexing!)



The LDLT-solution

Algorithm:
• Columnwise calculation of lij and djj for j = 2,...,n, starting with d11= k11:

jmjm jj
kg ,, =

rj

i

mr
riijij glkg

m

�
−

=

−=
1

1,...,1 −+= jmi j

where m = skyline of K, mm = max{mi, mj} 

ii

ij
ij d

g
l = 1,...,1 −+= jmi j

�
−

=

−=
1j

mr
rjrjjjjj

j

glkd

now:  decomposition of K to the factors D and L (or: LT)  

Here: lij denotes
an element of LT



The LDLT-solution

Algorithm:
• compute U via V:

�
−

=

−=
1i

mr
rriii

i

VlRV

( ) 1 1T − −=U L D V

now backsubstitution: first, compute VDV 1−=

then get (successively) for Ui-1 (i = n,...,2)

)(n
nn VU =Get and  

( 1) ( )i i
r r ri iV V l U− = − 1,..., −= imr i

)1(
11
−

−− = i
ii VU in the (n - i + 1)th evaluation, i.e. in the evaluation of Ui-1

Starting with V1 = R1, compute Vi for i = 2,…,n



The LDLT-solution

]145146465[ −−−=a ]7421[=b

][ 243444132333122211 lldlldldd=a

Practical issues (2)
• The sums over the products lrjgrj and lrigrj do not involve terms outside the 

skyline 
(“skyline reduction method”, “column reduction method”, “active column solution”)

• Storage: K as compact 1-D array
• lij replaces gij

• djj replaces kjj

• Vi replaces Ri

• replaces Vk

• Effective, because of skyline reduction, but the sums over the products lrjgrj and 
lrigrj can still involve zero terms. “Sparse solvers” skip the vanishing terms.

• Active column solutions: re-order the equations to reduce column heights
• Sparse solvers: re-order the equations to eliminate operations on elements equal 

to zero

)( j
kV

1 2 3 4[ ]R R R R=c

][ )(
4

)(
3

)(
2

)(
1

jjjj VVVV=c



The LDLT-solution

Example: 

2 2 1
3 2 0

5 3 0
. 10 4

10
symm

− −� �
� �−� �
� �= −
� �
� �
� �� �

K

1
1
2
3
1

� �
� �
� �
� �→ =
� �
� �
� �� �

m

First, get D and LT:

d11 = 2; now loop over all j, j = 2,…,5

j= 2: g12 = k12 = -2

l12 = g12/d11 = -2/2 = -1

d22 = k22 - l12 g12 = 3 – (-1)(-2) = 1

jmjm jj
kg ,, =

ii

ij
ij d

g
l = 1,...,1 −+= jmi j

�
−

=

−=
1j

mr
rjrjjjjj

j

glkd

1
2 0

5 3 0
10 4

1

2
1

0

1 −� �
� �−�

−

�
� �= −
� �
� �
� �� �

K



The LDLT-solution

Example (cont.):

j= 3: g23 = k23 = -2

l23 = g23/d22 = -2/1 = -2

d33 = k33 – l23 g23 = 5 – (-2)(-2) = 1

jmjm jj
kg ,, =

ii

ij
ij d

g
l = 1,...,1 −+= jmi j

�
−

=

−=
1j

mr
rjrjjjjj

j

glkd

2 1 1
1 0

3 0
10 4

1

1

0

2
− −� �

� �
� − �
� �= −
� �
� �
� �� �

K

j= 4: g34 = k34 = -3

l34 = g34/d33 = -3/1 = -3

d44 = k44 – l34 g34 = 10 – (-3)(-3) = 1

jmjm jj
kg ,, =

ii

ij
ij d

g
l = 1,...,1 −+= jmi j

�
−

=

−=
1j

mr
rjrjjjjj

j

glkd

2 1 1
1 2 0

1 0
4

1

3
1

0

− −� �
� �−� �
� �=
� �
� �
� �� �

−K



The LDLT-solution

Example (cont.):

j= 5: g15 = k15 = -1
g25 = k25 – l12 g15 = 0 – (-1)(-1) = -1
g35 = k35 – l23 g25 = 0 – (-2)(-1) = -2
g45 = k45 – l34 g35 = 4 – (-3)(-2) = -2

l15 = g15/d11 = -1/2 
l25 = g25/d22 = -1/1 = -1
l35 = g35/d33 = -2/1 = -2
l45 = g45/d44 = -2/1 = -2

d55 = k55 – l15 g15 – l25 g25 – l35 g35 – l45 g45 = 10 – (-1/2)(-1) – (-1)(-1) – (-2)(-2) – (-2)(-2) = 1/2 

jmjm jj
kg ,, =

ii

ij
ij d

g
l = 1,...,1 −+= jmi j

�
−

=

−=
1j

mr
rjrjjjjj

j

glkd

2 1
1 2
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� �� �

K



The LDLT-solution

Example (cont.):
Now, get the solution U of KU=R with R=[0 1 0 0 0]T

V1 = R1 = 0 
V2 = R2 – l12 V1 = 1 – 0 = 1
V3 = R3 – l23 V2 = 0 – (-2)(1) = 2
V4 = R4 – l34 V3 = 0 – (-3)(2) = 6
V5 = R5 – l15 V1 – l25 V2 – l35 V3 – l45 V4 = 0 – 0 – (-1)(1) – (-2)(2) – (-2) (6) = 17

Hence: V=[0 1 2 6 17]T and

�
−

=

−=
1i

mr
rriii

i

VlRV forward
reduction

backsubstitution

1 [0 1 2 6 34]T−= =V D V

5 5 34U V→ = =
( 1) ( )i i

r r ri iV V l U− = −

1,..., −= imr i

(4) (5)
1 1 15 5 0 ( 1/ 2)(34) 17V V l U= − = − − =

(4) (5)
2 2 25 5 1 ( 1)(34) 35V V l U= − = − − =

i = 5

(4) (5)
3 3 35 5 2 ( 2)(34) 70V V l U= − = − − =
(4) (5)

4 4 45 5 6 ( 2)(34) 74V V l U= − = − − =
(4)

4 4 74U V= = 17 35 292 74 4[ ]3 T=R

(5) =V V



The LDLT-solution

(3) (4)
3 3 34 4 70 ( 3)(74) 292V V l U= − = − − =i = 4

(3)
3 3 292U V= =

( 1) ( )i i
r r ri iV V l U− = − 1,..., −= imr iExample (cont.):

(2) (3)
2 2 23 3 35 ( 2)(292) 619V V l U= − = − − =i = 3

(2)
2 2 619U V= =

(1) (2)
1 1 12 2 17 ( 1)(619) 636V V l U= − = − − =i = 2

(1)
1 1 636U V= =

292[17 35 74 34]T=R

[17 292 74619 34]T=R

[ 619 29263 74 4]6 3 T= =R U



Properties of K

• for mK = i – mi, for all i > mK: LDLT decomposition requires ½ nmK
2 operations, 

reduction and backsubstitution requires 2nmK operations;
in general: ½ �(i – mi)2 + 2 �(i – mi) operations

• stiffness matrix of an element with suppressed rigid-body modes is positive-definite

• if K is positive-definite, then the matrix K(r) (matrix of the rth associated constraint
problem) is also positive-definite (Sturm sequence property) and all dii > 0

( ) ( )
1

det det det det det 0
n

T
iii

p dλ λ
=

= − � = = Π >K I K L D L
( ) ( ) ( ) ( )i i i i T=K L D L

( )
1 0iλ >

1,..., 1i n= −

0iid > 1,...,i n=

• if K is positive-semidefinite, dkk = 0 if ( )
1 0n kλ − =

• if dkk = 0  row interchanges can establish dkk ≠ 0 unless k = n – mλ + 1
mλ : multiplicity of λ=0

1,..., 1i n= −



Error estimate

Due to truncation and roundoff errors, we solve (K + δK) (U+ δU) = R rather than KU = R.

with

1δ δ−= −U K KU

( )cond
δ δ

≤
U K

K
U K ( )

1

cond nλ
λ

=K
A large condition
number implies
high probability
of erroneous solutions.

For t-bit double precision: 10 tδ −=
K

K

The number precision in the solution U, s, with 10 sδ −=
U

U
is thus ( )( )10log conds t≥ − K

cond(K) s (t=16)
10.00      15                

100.00      14                
1000.00      13                
10000.00     12              

In practice: Approx., based on upper bound ||K|| and lower bound from inverse iteration ( ) .
1

cond inv itλ
≈

K
K



Error estimate

• Bathe, page 749: Summary on truncation and roundoff errors in solving KU = R 



Related methods

• Cholesky factorization

• Static condensation

• Substructure analysis

• Frontal solution
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