
11th Lecture: Methods of Structural Reliability Analysis 
The aim of the present lecture is to introduce the most common techniques of structural 
reliability analysis, namely, First Order Reliability Methods (FORM) and Monte-Carlo 
simulation. First the concept of limit state equations and basic random variables is introduced. 
Thereafter the problem of error propagation is considered and it is shown that FORM 
provides a generalization of the classical solution to this problem. Different cases of limit 
state functions and probabilistic characteristics of basic random variables are then introduced 
with increasing generality. Furthermore, FORM results are related to partial safety factors 
used in common design codes. Subsequently, crude Monte-Carlo and Importance sampling is 
introduced as an alternative to FORM methods. The introduced methods of structural 
reliability theory provide strong tools for the calculation of failure probabilities for individual 
failure modes or components. On the basis of the present lecture, it is expected that the 
students should acquire knowledge and skills in regard to: 

• What is a basic random variable and what is a limit state function? 

• What is the graphical interpretation of the reliability index? 

• What is the principle for the linearization of non-linear limit state functions? 

• How to transform non-normal distributed random variables into normal distributed 
variables? 

• How to consider dependent random variables? 

• How are FORM results related to partial safety factors? 

• What is the principle of Monte-Carlo simulation methods? 

• Why is importance sampling effective and what does it require in terms of information 
additional to crude Monte-Carlo methods? 

 

 

 



11.1  Introduction 
The first developments of First Order Reliability Methods, also known as FORM methods 
took place almost 30 years ago. Since then the methods have been refined and extended 
significantly and by now they form one of the most important methods for reliability 
evaluations in structural reliability theory. Several commercial computer codes have been 
developed for FORM analysis and the methods are widely used in practical engineering 
problems and for code calibration purposes.  

In the present chapter first the basic idea behind FORM methods are highlighted and 
thereafter the individual steps of the methods are explained in detail.  

Thereafter the relationship between the results of FORM analysis and partial safety factors for 
design codes will be explained. Finally the basic concepts of Monte Carlo methods, in 
structural reliability will be outlined.  

11.2  Failure Events and Basic Random Variables 
In reliability analysis of technical systems and components the main problem is to evaluate 
the probability of failure corresponding to a specified reference period. However, also other 
non-failure states of the considered component or system may be of interest, such as excessive 
damage, unavailability, etc.  

In general any state, which may be associated with consequences in terms of costs, loss of 
lives and impact to the environment are of interest. In the following we will not differentiate 
between these different types of states but for simplicity refer to all these as being failure 
events, however, bearing in mind that also non-failure states may be considered in the same 
manner. 

It is convenient to describe failure events in terms of functional relations, which if they are 
fulfilled define that the considered event will occur. A failure event may be described by a 
functional relation, the limit state function )(xg  in the following way: 

{ }0)( ≤= xF g (11.1) 

where the components of the vector x  are realisations of the so-called basic random variables 
X  representing all the relevant uncertainties influencing the probability of failure. In 
Equation (11.1) the failure event F  is simply defined as the set of realisation of the function 

)(xg , which is zero or negative.  

As already mentioned other events than failure may be of interest in reliability analysis and 
e.g. in reliability updating problems also events of the following form are highly relevant: 

{ }0)( == xI h  (11.2) 

Having defined the failure event the probability of failure may be determined by the following 
integral: 
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where )(xXf  is the joint probability density function of the random variables X . This 
integral is, however, non-trivial to solve and numerical approximations are expedient. Various 
methods for the solution of the integral in Equation (11.3) have been proposed including 
numerical integration techniques, Monte Carlo simulation and asymptotic Laplace expansions. 
Numerical integration techniques very rapidly become inefficient for increasing dimension of 
the vector X  and are in general irrelevant. In the following we will direct the focus on the 
widely applied and quite efficient FORM methods, which furthermore can be shown to be 
consistent with the solutions obtained by asymptotic Laplace integral expansions. 

11.3 Linear Limit State Functions and Normal Distributed 
Variables 

For illustrative purposes we will first consider the case where the limit state function )(xg  is 
a linear function of the basic random variables X . Then we may write the limit state function 
as:  
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If the basic random variables are normally distributed we furthermore have that the linear 
safety margin M  defined through: 

∑
=

+=
n

i
ii XaaM

1
0  (11.5)  

is also normally distributed with mean value and variance 
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where ijρ  are the correlation coefficients between the variables iX  and jX . 

Defining the failure event by Equation (11.1) we can write the probability of failure as: 

)0()0)(( ≤=≤= MPgPPF X  (11.7) 

which in this simple case reduces to the evaluation of the standard normal distribution 
function: 

)( β−Φ=FP  (11.8) 

where β  the so-called reliability index (due to Cornell (1969) and Basler (1961)) is given as: 
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The reliability index β as defined in Equation (11.9) has a geometrical interpretation as 
illustrated in Figure 11.1 where a two dimensional case is considered: 
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Figure 11.1 Illustration of the two-dimensional case of a linear limit state function and standardised 
normally distributed variables U . 

In Figure 1 the limit state function )(xg  has been transformed into the limit state function 
)(ug  by normalisation of the random variables in to standardized normally distributed 

random variables as: 
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such that the random variables iU  have zero means and unit standard deviations.  

Then the reliability index β  has the simple geometrical interpretation as the smallest distance 
from the line (or generally the hyper-plane) forming the boundary between the safe domain 
and the failure domain, i.e. the domain defined by the failure event. It should be noted that this 
definition of the reliability index (due to Hasofer and Lind (1974)) does not depend on the 
limit state function but rather the boundary between the safe domain and the failure domain. 
The point on the failure surface with the smallest distance to origin is commonly denoted the 
design point or most likely failure point. 

It is seen that the evaluation of the probability of failure in this simple case reduces to some 
simple evaluations in terms of mean values and standard deviations of the basic random 
variables, i.e. the first and second order information. 

11.4 The Error Accumulation Law 
The results given in Equation (11.6) have been applied to study the statistical characteristics 
of errors ε  accumulating in accordance with some differentiable function )(xf , i.e.:  

)(xf=ε  (11.11) 



where T
nxxx ),..,,( 21=x  is a vector of realizations of the random variables X  representing 
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iXσ  are the standard deviations and ijρ  the correlation 

coefficients. The idea is to approximate the function )(xf  by its Taylor expansion including 
only the linear terms, i.e.: 
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where T
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From Equation (11.12) and Equation (11.6) it is seen that the expected value of the error [ ]εE  
can be assessed by: 

[ ] )( XμfE =ε  (11.13) 

and its variance [ ]εVar  can be determined by: 
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Provided that the distribution functions for the random variables are known, e.g. normal 
distributed the probability distribution function of the error is easily assessed.  It is, however, 
important to notice that the variance of the error as given by Equation (11.14) depends on the 
linearization point, i.e. T

nxxx ),..,,( 0,0,20,10 =x . 

The results given in Equation (11.6) have been applied to study the statistical characteristics 
of errors ε  accumulating in accordance with some differentiable function )(xf , i.e.:  

)(xf=ε  (11.15) 

where T
nxxx ),..,,( 21=x  is a vector of realizations of the random variables X  representing 

measurement uncertainties with mean values T
XXX n
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μμμ=Xμ  and covariances 
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ji XXijji XXCov σσρ=,  where 
iXσ  are the standard deviations and ijρ  the correlation 

coefficients. The idea is to approximate the function )(xf  by its Taylor expansion including 
only the linear terms, i.e.: 
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where T
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From Equation (11.12) and Equation (11.6) it is seen that the expected value of the error [ ]εE  
can be assessed by: 

[ ] )( XμfE =ε  (11.17) 

and its variance [ ]εVar  can be determined by: 
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Provided that the distribution functions for the random variables are known, e.g. normal 
distributed the probability distribution function of the error is easily assessed.  It is, however, 
important to notice that the variance of the error as given by Equation (11.14) depends on the 
linearization point, i.e. T

nxxx ),..,,( 0,0,20,10 =x . 

 

Example 1 – Linear Safety Margin 

Consider a steel rod under pure tension loading. The rod will fail if the applied stresses on the 
rod cross-sectional area exceed the steel yield stress. The yield stress R  of the rod and the 
loading stress on the rod S  are assumed to be uncertain modelled by uncorrelated normal 
distributed variables. The mean values and the standard deviations of the yield strength and 
the loading are given as 35,350 == RR σμ  MPa and 40,200 == SS σμ  MPa respectively. 

The limit state function describing the event of failure may be written as: 

srg −=)(x  

whereby the safety margin M  may be written as: 

SRM −=  

The mean value and standard deviation of the safety margin M are thus: 

150200350 =−=Mμ  

15.534035 22 =+=Mσ  

whereby we may calculate the reliability index as: 

84.2
15.53

150 ==β  

Finally we have that the failure probability is determined as: 
3104.2)84.2( −⋅=−Φ=FP  



Example 2 – Error Accumulation Law 

As an example of the use of the error propagation law consider a right angle triangle ABC, 
where B is the right angle. The lengths of the opposite side b  and adjacent side a  are 
measured. Due to measurement uncertainty the length of the sides a  and b  are modelled as 
independent normal distributed random variables with expected values aμ  = 12.2, bμ  = 5.1 
and standard deviations aσ  = 0.4 and bσ  = 0.3, respectively. It is assumed that a critical 
condition will occur if the hypotenuse c  is larger than 13.5 and the probability that this 
condition should happen is to be assessed.  

Based on the probabilistic model of a  and b  the statistical characteristics of the hypotenuse 
c  given by: 

22 bac +=  

may be assessed through the error propagation model given by Equations (11.13)-(11.14), 
yielding:  
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which by inserting for a  and b  their expected values yield: 
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As seen from the above the variance of the hypotenuse c  depends on the chosen linearization 
point. If instead of the mean value point a value corresponding to the mean value plus two 
standard deviations was chosen the variance of c  would have been: 
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which can be shown to imply a 5.55% reduction of the probability that the hypotenuse is 
larger than 13.5. Even though such a change seems small it could be of importance in a 
practical importance situation where the consequences of errors can be significant.  

11.5  Non-linear Limit State Functions 
When the limit state function is non-linear in the basic random variables X  the situation is not 
as simple as outlined in the previous. An obvious approach is, however, considering the error 
propagation law explained in the foregoing to represent the failure domain in terms of a 
linearization of the boundary between the safe domain and the failure domain, i.e. the failure 
surface, but the question remain how to do this appropriately. 



 

Hasofer and Lind (1974)suggested performing this linearization in the design point of the 
failure surface represented in normalised space.  The situation is illustrated in the two 
dimensional space in Figure 11.2. 
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Figure 11.2 Illustration of the linearization proposed by Hasofer and Lind (1974)  in standard normal 
space. 

In Figure 11.2 a principal sketch is given illustrating that the failure surface is linearized in the 
design point *u by the line 0)( =′ ug . The α-vector is the out ward directed normal vector to 
the failure surface in the design point *u   i.e. the point on the linearized failure surface with 
the shortest distance - β - to the origin. 

As the limit state function is in general non-linear one does not know the design point in 
advance and this has to be found iteratively e.g. by solving the following optimisation 
problem: 
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This problem may be solved in a number of different ways. Provided that the limit state 
function is differentiable the following simple iteration scheme may be followed 
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First a design point is guessed αu   * β=  and inserted into Equation (11.20) whereby a new 
normal vector α to the failure surface is achieved. Then this α-vector is inserted into Equation 
(11.8) from which a new β-value is calculated.  

The iteration scheme will converge in a few, say normally 6-10 iterations and provides the 
design point *u as well as the reliability index β  and the outward normal to the failure surface 
in the design point α.  As already mentioned the reliability index β may be related directly to 
the probability of failure. The components of the α-vector may be interpreted as sensitivity 
factors giving the relative importance of the individual random variables for the reliability 
index β.  

Second Order Reliability Methods (SORM) follow the same principles as FORM, however, as 
a logical extension of FORM the failure surface is expanded to the second order in the design 
point. The result of a SORM analysis may be given as the FORM β multiplied with a 
correction factor evaluated on the basis of the second order partial derivatives of the failure 
surface in the design point. Obviously the SORM analysis becomes exact for failure surfaces, 
which may be given as second order polynomial of the basic random variables. However, in 
general the result of a SORM analysis can be shown to be asymptotically exact for any shape 
of the failure surface as β approaches infinity. The interested reader is referred to the literature 
for the details of SORM analyses; see e.g. Madsen et al. (1986). 

Example 3 – Non-linear Safety Margin 

Consider again the steel rod from the previous example. However, now it is assumed that the 
cross sectional areas of the steel rod A  is also uncertain.  

The steel yield stress R  is normal distributed with mean values and standard deviation 
35,350 == RR σμ  MPa and the loading S  is normal distributed with mean value and 

standard deviation 300,1500 == SS σμ  N. Finally the cross sectional area A  is assumed 
normally distributed with mean value and standard deviation ,A Aμ σ= =10 1 2mm .  

The limit state function may be written as: 

sarg −⋅=)(x  

Now the first step is to transform the normally distributed random variables R , A  and S  into 
standardized normally distributed random variables, i.e.: 
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The limit state function may now be written in the space of the standardized normally 
distributed random variables as: 



200035300350350u          
)1500300()10)(35035(          

)())(()(

R ++−+=
+−++=

+−++=

ARSA

SAR

SSSAAARRR

uuuu
uuu

uuuug μσμσμσ

 

The reliability index and the design point may be determined in accordance with Equation 
(11.11) as: 
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which by calculation gives the iteration history shown in Table 11.1. 
 
Iteration Start  1  2  3  4  5 
β  3.0000  3.6719  3.7399  3.7444  3.7448  3.7448 
αR  -0.5800  -0.5701  -0.5612  -0.5611 -0.5610 -0.5610 
αA  -0.5800  -0.5701  -0.5612  -0.5611 -0.5610 -0.5610 
αS  0.5800  0.5916  0.6084  0.6086  0.6087  0.6087 

Table 11.1. Iteration history for the non-linear limit state example.  

From Table 11.1 it is seen that the basic random variable S modelling the load on the steel rod 
is slightly dominating with an α-value equal to 0.6087. Furthermore it is seen that both the 
variables R and A are acting as resistance variables as their α-values are negative. The failure 
probability for the steel rod is determined as 51002.9)7448.3( −⋅=−Φ=FP . 

11.6  Correlated and Dependent Random Variables 
The situation where basic random variables X  are stochastically dependent is often 
encountered in practical problems. For normally distributed random variables we remember 
that the joint probability distribution function may be described in terms of the first two 
moments, i.e. the mean value vector and the covariance matrix. This is, however, only the 
case for normally or log-normally distributed random variables.  

Considering in the following the case of normally distributed random variables these 
situations may be treated completely along the same lines as described in the foregoing. 
However, provided that we in addition to the transformation by which we go from a limit state 



function expressed in X variables to a limit state function expressed in U variables, introduce 
a transformation in between where we obtain that the considered random variables first are 
standardized before they are made uncorrelated. I.e. the row of transformations yields: 

UYX →→  

In the following we will see how this transformation may be implemented in the iterative 
procedure outlined previously. 

Let us assume that the basic random variables X are correlated with covariance matrix given 
as: 
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and correlation coefficient matrix Xρ : 
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If only the diagonal elements of these matrixes are non-zero clearly the basic random 
variables are uncorrelated.  

As before the first step is to transform the n-vector of basic random variables X  into a vector 
of standardised random variables Y  with zero mean values and unit variances. This operation 
may be performed by  
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whereby the covariance matrix of  Y , i.e. YC  is equal to the correlation coefficient matrix of 
X , i.e. Xρ . 

The second step is to transform the vector of standardized basic random variables Y , into a 
vector of uncorrelated basic random variables U . This last transformation may be performed 
in several ways. The approach described in the following utilises the Choleski factorisation 
from matrix algebra and is efficient for both hand calculations and for implementation in 
computer programs.  

The desired transformation may be written as  

TUY =  (11.25) 

where T is a lower triangular matrix  such that 0=ijT  for ij > . It is then seen that the 
covariance matrix YC  can be written as: 
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from which it is seen that the components of T may be determined as:  
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Considering the example from before but now with the additional information that the random 
variables A and R are correlated with correlation coefficient matrix: 
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with 1.0== RAAR ρρ  and all other correlation coefficients equal to zero we can calculate the 
transformation matrix T as: 
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The components of the vector Y may then be calculated as: 
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and finally the components of the vector X are determined as: 
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whereby we can write the limit state function in terms of the uncorrelated and normalised 
random variables U as follows: 

)u()u)()u.u.(()u(g SSSAAARRRA μσμσμσ +−++⋅⋅+⋅= 995010  (11.32) 

from which the reliability index can be calculated as in the previous example. 

In case the stochastically dependent basic random variables are not normally or log-normally 
distributed the dependency can no longer be described completely in terms of correlation 
coefficients and the above-described transformation is thus not appropriate. In such cases 
other transformations must be applied as described in the next section. 



11.7  Non-Normal and Dependent Random Variables 
As stated in the previous the joint probability distribution function of a random vector X can 
only be completely described in terms of the marginal probability distribution functions for 
the individual components of the vector X and the correlation coefficient matrix when all the 
components of X are either normally or log-normally distributed. 

I the following we shall first consider the simple case where the components of X are 
independent but non-normally distributed. Thereafter we shall see how in some cases the 
situation of jointly dependent and non-normally distributed random variables may be treated. 

 

The Normal-tail Approximation 

One approach to consider the problem of non-normally distributed random variables within 
the context of the iterative scheme given in Equations (11.20)-(11.21) for the calculation of 
the reliability index β is to approximate the real probability distribution by a normal 
probability distribution in the design point. 

As the design point is usually located in the tails of the distribution functions of the basic 
random variables the scheme is often referred to as the “normal tail approximation”. 

Denoting by *x  the design point the approximation is introduced by: 
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where 
iXμ′  and 

iXσ  are the unknown mean value and standard deviation of the approximating 

normal distribution. 

Solving Equation (11.33) and (11.34) with respect to 
iXμ′  and 

iXσ  we obtain: 
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This transformation may easily be introduced in the iterative evaluation of the reliability index 
β as a final step before the basic random variables are normalised. 
 
 
 
The Rosenblatt Transformation 

If the joint probability distribution function of the random vector X can be obtained in terms 
of a sequence of conditional probability distribution functions e.g.: 



)x(F)x,x,xx(F)x,x,xx(F)x(F XnnXnnXX nn 12211121 11
……… −−− −

⋅=  (11.36) 

the transformation from the X-space to the U-space may be performed using the so-called 
Rosenblatt transformation: 
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where n is the number of random variables, ),,,( 121 −iiXi xxxxF …  is the conditional probability 
distribution function for the i’th random variable given the realisations of 121 ,, −ixxx … and 

)(⋅Φ  is the standard normal probability distribution function.  From the transformation given 
by Equation (11.37) the basic random variables X may be expressed in terms of standardised 
normal distributed random variables U by  
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In some cases the Rosenblatt transformation cannot be applied because the required 
conditional probability distribution functions cannot be provided. In such cases other 
transformations may be useful such as e.g. the Nataf transformation se e.g. Madsen et al. 
(1986). Standard commercial software for FORM analysis usually include a selection of 
possibilities for the representation of dependent non-normally distributed random variables. 

11.7  Software for Reliability Analysis 
Several software packages are available for FORM analysis following the principles out lined 
in the forgoing sections. Most of the programs are more or less self-explanatory provided that 
the basic principles of FORM analysis are known. 

The reader is referred to software packages such as STRUREL and VaP for which more 
information is available on the web.  

7  Assessment of Partial Safety Factors by FORM Analysis  
In code based design formats such as the Eurocodes and the Swisscodes, design equations are 
prescribed for the verification of the capacity of different types of structural components in 
regard to different modes of failure. The typical format for the verification of a structural 
component is given as design equations such as: 



( )/ 0c m G C Q CzR G Qγ γ γ− + =  (11.39) 

where: 
 CR  is the characteristic value for the resistance  

z  is a design variable (e.g. the cross sectional area of the steel rod considered 
previously) 

 CG  is a characteristic value for the permanent load 
 CQ  is a characteristic value for the variable load 
 mγ  is the partial safety factor for the resistance 
 Gγ  is the partial safety factor for the permanent load 
 Qγ  is the partial safety factor  for the variable load 

In the codes different partial safety factors are specified for different materials and for 
different types of loads. Furthermore when more than one variable load is acting load 
combination factors are multiplied on one ore more of the variable load components to take 
into account the fact that it is unlikely that all variable loads are acting with extreme values at 
the same time.  

The partial safety factors together with the characteristic values are introduced in order to 
ensure a certain minimum reliability level for the structural components designed according to 
the code. As different materials have different uncertainties associated with their material 
parameters the partial safety factors are in general different for the different materials. The 
principle is illustrated in Figure 11.3 for the simple r-s case. 
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Figure 11.3 Illustration of the relation between design values, characteristic values and partial safety 
factors. 

In accordance with a given design equation such as e.g. Equation (11.39) a reliability analysis 
may be made with a limit state function of the same form as the design equation but where the 
characteristic values for the resistance and load variables are now replaced by basic random 
variables, i.e.: 



0=+− )QG(zR  (11.40) 

For given probabilistic models for the basis random variables R, G and Q and with a given 
requirement to the maximum allowable failure probability it is now possible to determine the 
value of the design variable z which corresponds to this failure probability. Such a design 
could be interpreted as being an optimal design because it exactly fulfils the given 
requirements to structural reliability.  

Having determined the optimal design z we may also calculate the corresponding design point 
in the original space, i.e. dx  for the basic random variables. This point may be interpreted as 
the most likely failure point, i.e. the most likely combination of the outcomes of the basic 
random variables leading to failure. Now partial safety factors may be derived from the design 
point for the various resistance variables as:  

d

c
m x

x
=γ  (11.41) 

and for load variables: 
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where xd is the design point for the considered design variable and xc the corresponding 
characteristic value. 

 

Example 4 – Calculation of Partial Safety Factors 

Consider again the case of the steel rod. Assume that the reliability index of β=3.7448 is 
considered optimal, implicitly implying that the optimal design variable z is equal to 1, the 
task is to establish a partial safety factor based design format for this problem. 

The first task is to establish the design equation, which is simply the limit state equation 
where the basic random variables are exchanged with characteristic values and multiplied or 
divided by partial safety factors, i.e.: 
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The next step is to establish the characteristic values and the partial safety factors and to this 
end the results of the FORM analysis performed previously may be utilised. The design point 
for the resistance variable R is obtained by: 

 

56.2760.350357448.3561.0* =+⋅⋅−=+⋅= RRRd ur μσ  

defining the characteristic value of the resistance as a lower 5% fractile value, which is a 
typical definition according to most design codes, this is determined as:  

60.2923503564.164.1 =+⋅−=+⋅−= RRcr μσ  



whereby we get the partial safety factor for the resistance as: 

06.1
56.276
60.292 ==Rγ  

Similarly in accordance with common code practice by defining ca as the mean value of A and 
cs  by the upper 98% fractile value of the distribution function for S there is:  

27.1
90.7
0.10 ==Aγ ,  06.1

0.2115
0.2242 ==Sγ  

Finally we may use the derived partial safety factor design format for the design of the steel 
rod whereby we get the following equation for the determination of the design z: 
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8  Simulation Methods 
The probability integral considered in Equation (11.3) for the estimation of which we have 
seen that FORM methods may successfully be applied: 
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may also be estimated by so-called simulation techniques. In the literature a large variety of 
simulation techniques may be found and a treatment of these will not be given in the present 
text. Here it is just noted that simulation techniques have proven their value especially for 
problems where the representation of the limit state function is associated with difficulties. 
Such cases are e.g. when the limit state function is not differentiable or when several design 
points contribute to the failure probability. 

However, as all simulation techniques have origin in the so-called Monte Carlo method the 
principles of this – very crude simulation technique - will be shortly outlined in the following. 
Thereafter one of the most commonly applied techniques for utilisation of FORM analysis in 
conjunction with simulation techniques, namely the importance sampling method, will be 
explained. 

The basis for simulation techniques is well illustrated by rewriting the probability integral in 
Equation (11.43) by means of an indicator function as shown in Equation (11.44) 
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where the integration domain is changed from the part of the sample space of the vector 
T

1 2 n(X ,X ,...,X )=X  for which ( ) 0g ≤x  to the entire sample space of X and where [ ]( ) 0I g ≤x  is 
an indicator function equal to 1 if ( ) 0g ≤x  and otherwise equal to zero. Equation (11.44) is in 



this way seen to yield the expected value of the indicator function [ ]( ) 0I g ≤x . Therefore if 
now N realisations of the vector X, i.e. j , 1,2,..,j= Nx  are sampled it follows from sample 
statistics that: 
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is an unbiased estimator of the failure probability fP . 

 

Crude Monte-Carlo Simulation 

The crude Monte Carlo simulation technique rests directly on the application of Equation 
(11.45) A large number of realisations of the basic random variables X, i.e. N,j,ˆ j …21x =  
are generated (or simulated) and for each of the outcomes jx̂ it is checked whether or not the 
limit state function taken in jx̂  is positive. All the simulations for which this is not the case 
are counted ( fn ) and after N simulations the failure probability fp  may be estimated through: 

N
n

p f
f =  (11.46) 

which then may be considered a sample expected value of the probability of failure. In fact for 
∞→N  the estimate of the failure probability becomes exact. However, simulations are often 

costly in computation time and the uncertainty of the estimate is thus of interest. It is easily 
realised that the coefficient of variation of the estimate is proportional to fn/1  meaning 

that if Monte Carlo simulation is pursued to estimate a probability in the order of 10-6 it must 
be expected that approximately 108 simulations are necessary to achieve an estimate with a 
coefficient of variance in the order of 10%.  A large number of simulations are thus required 
using Monte Carlo simulation and all refinements of this crude technique have the purpose of 
reducing the variance of the estimate. Such methods are for this reason often referred to as 
variance reduction methods. 

The simulation of the N outcomes of the joint density function in Equation (11.46) is in 
principle simple and may be seen as consisting of two steps. Here we will illustrate the steps 
assuming that the n components of the random vector X are independent. 

In the first step a “pseudo random” number between 0 and 1 is generated for each of the 
components in jx̂  i.e. jix̂ i=1,..,n.The generation of such numbers may be facilitated by build-

in functions of basically all programming languages and spreadsheet software. 

 

In the second step the outcomes of the “pseudo random” numbers zji are transformed to 
outcomes of jix̂  by: 

)(1
jiXji zFx

i

−=  (11.47) 

where ( )
iXF   is the probability distribution function for the random variable iX . 



The principle is also illustrated in Figure 11.4. 
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Figure 11.4 Principle for simulation of a random variable. 

 

This process is the continued until all components of the vector jx̂  have been generated. 

 

Importance Sampling Simulation Method 

As already mentioned the problem in using Equation (11.45) is that the sampling function 
f ( )x x  typically is located in a region far away from the region where the indicator function 
[ ]( ) 0I g ≤x  attains contributions. The success rate in the performed simulations is thus low. In 

practical reliability assessment problems where typical failure probabilities are in the order of 
10-3 – 10-6 this in turn leads to the effect that the variance of the estimate of failure probability 
will be rather large unless a substantial amount of simulations are performed. 

To overcome this problem different variance reduction techniques have been proposed aiming 
at, with the same number of simulations to reduce the variance of the probability estimate. In 
the following we shall briefly consider one of the most commonly applied techniques for 
variance reduction in structural reliability applications, namely the importance sampling 
method. 

The importance sampling method takes basis in the utilisation of prior information about the 
domain contribution to the probability integral, i.e. the region that contributes to the indicator 
function.  Let us first assume that we know which point in the sample space ∗x  contributes the 
most to the failure probability. Then by centring the simulations on this point, the important 
point, we would obtain a higher success rate in the simulations and the variance of the 
estimated failure probability would be reduced. Sampling centred on an important point may 
be accomplished by rewriting Equation (11.42) in the following way: 
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in which ( )sf x  is denoted the importance sampling density function. It is seen that the integral 

in Equation (11.48) represents the expected value of the term [ ] ( )( ) 0
( )s

fI g
f

≤ x xx
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 where the 

components of s are distributed according to ( )fV x . The question in regard to the choice of an 
appropriate importance sampling function ( )Sf s , however, remains open. 

One approach to the selection of an importance sampling density function ( )Sf s  is to select a 
n-dimensional joint Normal probability density function with uncorrelated components, mean 
values equal to the design point as obtained from FORM analysis, i.e. = *

Sμ x  and standard 
deviations e.g. corresponding to the standard deviations of the components of X, i.e. =s Xσ σ . 
In this case Equation (11.48) may be written as: 
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in equivalence to Equation (11.44) leading to: 
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which may be assessed by sampling over realisations of s  as described in the above. 

Application of Equation (11.50) instead of Equation (11.44) greatly enhances efficiency of the 
simulations. If the limit state function is not too non-linear around the design point x∗  the 
success rate of the simulations will be close to 50%. If the design point is known in advance in 
a reliability problem where the probability of failure is in the order of 10-6 the number of 
simulations required to achieve a coefficient of variance in the order of 10% is thus around 
200. This number stands in strong contrast to the 108 required using the crude Monte Method 
discussed before, but of course also requires knowledge about the design point. 
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