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Contents of Today's Lecture

• Probability theory
• Uncertainties in engineering decision making
• Probabilistic modelling
• Engineering model building
• Methods of structural reliability theory

- Linear normal distributed safety margins 
- Non-linear normal distributed safety margins
- General case
- SORM improvements
- Monte-Carlo simulation
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Conditional Probability and Bayes‘s Rule
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Overview of Uncertainty Modelling

• Why uncertainty modelling

Decision Making !

Risks

Consequences of eventsProbabilities of events

Probabilistic model

Data Model estimation

Decision Making !Decision Making !

RisksRisks

Consequences of eventsProbabilities of events Consequences of eventsConsequences of eventsProbabilities of eventsProbabilities of events

Probabilistic modelProbabilistic model

Data Model estimationData Model estimation

Uncertain phenomenonUncertain phenomenon
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Uncertainties in Engineering Problems

Different types of uncertainties influence decision making

• Inherent natural variability – aleatory uncertainty
- result of throwing dices
- variations in material properties
- variations of wind loads
- variations in rain fall

• Model uncertainty – epistemic uncertainty
- lack of knowledge (future developments)
- inadequate/imprecise models (simplistic physical modelling)

• Statistical uncertainties – epistemic uncertainty 
- sparse information/small number of data
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Uncertainties in Engineering Problems

• Consider as an example a dike structure 

- the design (height) of the dike will be determining the 
frequency of floods

- if exact models are available for the prediction of future 
water levels and our knowledge about the input parameters 
is perfect then we can calculate the frequency of floods (per 
year) - a deterministic world !

- even if the world would be deterministic – we would not 
have perfect information about it – so we might as well 
consider the world as random   
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Uncertainties in Engineering Problems

In principle the so-called 

inherent physical uncertainty (aleatory – Type I)

is the uncertainty caused by the fact that the world is random, however, 
another pragmatic viewpoint is to define this type of uncertainty as

any uncertainty which cannot be reduced by means of collection of additional 
information

the uncertainty which can be reduced is then the 

model and statistical uncertainties (epistemic – Type II) 
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Uncertainties in Engineering Problems

Observed annual 
extreme water levels

Model for annual 
extremes

Regression model to
predict future extremes

Predicted future 
extreme water level

Aleatory 
Uncertainty

Epistemic 
Uncertainty

Observed annual 
extreme water levels

Model for annual 
extremes

Regression model to
predict future extremes

Predicted future 
extreme water level

Aleatory 
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Epistemic 
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Uncertainties in Engineering Problems

The relative contribution of aleatory and epistemic uncertainty to the 
prediction of future water levels is thus influenced directly by the applied 
models 

refining a model might reduce the epistemic uncertainty – but in general also 
changes the contribution of aleatory uncertainty

the uncertainty structure of a problem can thus be said to be scale 
dependent !
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Uncertainties in Engineering Problems

Knowledge

Time
Future

Past
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The uncertainty structure changes also as function of time – is thus time 
dependent !
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Random Variables

• Probability distribution and density functions

A random variable is denoted with capital letters : X

A realization of a random variable is denoted with small letters : x 

We distinguish between 

- continuous random variables : can take any value in a given range

- discrete random variables : can take only discrete values
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Random Variables

• Probability distribution and density functions

The probability that the outcome of a discrete 
random variable X is smaller than x is denoted 
the probability distribution function

The probability density function for a discrete
random variable is defined by
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Random Variables

• Probability distribution and density functions

The probability that the outcome of a 
continuous random variable X is smaller 
than x is denoted the 
probability distribution function

The probability density function for a 
continuous random variable is defined by 
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Random Variables

• Moments of random variables and the expectation operator

Probability distribution and density function can be described in terms of 
their parameters    or their moments 

Often we write 

The parameters can be related to the moments and visa versa

),( pxFX ),( pxf X

Parameters

p
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Random Variables

• Moments of random variables and the expectation operator

The i‘th moment mi for a continuous random variable X is defined through

The expected value E[X] of a continuous random variable X is defined 
accordingly as the first moment 

∫
∞

∞−

⋅= dx)x(fxm X
i

i

[ ] ( )dxxfxXE XX ∫
∞

∞−

⋅==μ



Swiss Federal Institute of Technology

Random Variables

• Moments of random variables and the expectation operator

The i‘th moment mi for a discrete random variable X is defined through

The expected value E[X] of a discrete random variable X is defined 
accordingly as the first moment 
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Random Variables

• Moments of random variables and the expectation operator

The standard deviation of a continuous random variable is defined as the 
second central moment i.e. for a continuous random variable X we have

for a discrete random variable we have correspondingly
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Random Variables

• Moments of random variables and the expectation operator

The ratio between the standard deviation and the expected value of a 
random variable is called the Coefficient of Variation CoV and is defined as

a useful characteristic to indicate the variability of the random variable 
around its expected value
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Random Variables

• Typical probability distribution
functions in engineering

Normal : sum of random effects

Log-Normal: product of random
effects

Exponential: waiting times

Gamma: Sum of waiting times

Beta: Flexible modeling function
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Random Variables

• The Normal distribution

The analytical form of the Normal distribution may be derived by
repeated use of the result regarding the probability density function 
for the sum of two random variables

The normal distribution is very frequently applied in engineering 
modelling when a random quantity can be assumed to be composed as 
a sum of a number of individual contributions.

A linear combination S of n Normal distributed random variables 
is thus also a Normal distributed random variable , 1,2,..,iX i n=

0
1

n

i i
i

S a a X
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Random Variables

• The Normal distribution:

In the case where the mean value is equal to zero and the standard 
deviation is equal to 1 the random variable is said to be standardized.
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Stochastic Processes and Extremes

• Random quantities may be “time variant” in the sense that they take new 
values at different times or at new trials.

- If the new realizations occur at discrete times and have discrete values the 
random quantity is called a random sequence

failure events, traffic congestions,…

- If the new realizations occur continuously in time and take continuous values 
the random quantity is called a random process or stochastic process

wind velocity, wave heights,…
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Stochastic Processes and Extremes

• Random sequences

The Poisson counting process is one of the most commonly applied families of 
probability distributions applied in reliability theory

The process N(t) denoting the number of events in a (time) interval (t, t+Dt[
is called a Poisson process if the following conditions are fulfilled:

1) the probability of one event in the interval (t, t+Dt[  is asymptotically    
proportional to Dt.

2) the probability of more than one event in the interval (t, t+Dt[ is a 
function of higher order of Dt for Dt→0.

3) events in disjoint intervals are mutually independent.
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Stochastic Processes and Extremes

• Random sequences

The probability distribution function of the (waiting) time till the first 
event T1 is now easily derived recognizing that the probability of T1 >t
is equal to P0(t) we get:

1T 1 0 1

t

0

F (t )=1-P (t )

=1-exp(- ν(τ)dτ )∫

1T 1F (t )=1-exp(-νt)

Homogeneous case !

Exponential probability distribution
Exponential probability density

1T 1f (t )=ν exp(-νt)⋅
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Stochastic Processes and Extremes
• Continuous random processes

A continuous random process is a random process which has realizations 
continuously over time and for which the realizations belong to a 
continuous sample space.

Variations of: 
water levels
wind speed
rain fall
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Stochastic Processes and Extremes
• Continuous random processes

The mean value of the possible realizations of a random process is given as:

The correlation between realizations at any two points in time is given as:
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Auto-correlation function – refers to a scalar valued random process
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Stochastic Processes and Extremes

Extreme Value Distributions

In engineering we are often interested in extreme values i.e. the
smallest or the largest value of a certain quantity within a certain
time interval e.g.:

The largest earthquake in 1 year

The highest wave in a winter season

The largest rainfall in 100 years
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Stochastic Processes and Extremes

Extreme Value Distributions

We could also be interested in the smallest or the largest value of a 
certain quantity within a certain volume or area unit e.g.:

The largest concentration of pesticides in a volume of soil

The weakest link in a chain

The smallest thickness of concrete cover
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Stochastic Processes and Extremes

Extremes of a random process:
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Overview of Estimation and Model Building

Different types of information is used when
developing engineering models

- subjective information
- frequentististic information

Frequentistic
- Data

Subjective
- Physical understanding
- Experience
- Judgement

Distribution family

Distribution parameters

Probabilistic model
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Structural Reliability Analysis

Reliability of structures cannot be 
assessed through failure rates because

- Structures are unique in     
nature

- Structural failures normally 
take place due to extreme 
loads exceeding the residual 
strength

Therefore in structural reliability, models 
are established for resistances R and 
loads S individually and the structural 
reliability is assessed through:

)0( ≤−= SRPPf

r
s

R

S



Swiss Federal Institute of Technology

Structural Reliability Analysis

If only the resistance is uncertain the 
failure probability may be assessed by

If also the load is uncertain we have

where it is assumed that the load and 
the resistance are independent 

This is called the 

„Fundamental Case“

)1/()()( ≤==≤= sRPsFsRPP Rf

∫
∞

∞−

=≤−=≤= dxxfxFSRPSRPP SRf )()()1()(

)(),( sfrf SR

sr ,

Load S
Resistance R

)(xf
FP

sr ,

B

A

x

)(),( sfrf SR

sr ,

Load S
Resistance R

)(),( sfrf SR

sr ,

Load S
Resistance R

)(xf
FP

sr ,

B

A

x



Swiss Federal Institute of Technology

Structural Reliability Analysis

In the case where R and S are normal 
distributed the safety margin M is also 
normal distributed

Then the failure probability is

with the mean value of M

and standard deviation of M 

The failure probability is then

where the reliability index is

SRM −=
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Structural Reliability Analysis

The normal distributed safety margin M
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Structural Reliability Analysis

In the general case the resistance 
and the load may be defined in terms 
of functions
where X are basic random variables

and the safety margin as 

where                   is called the 

limit state function

failure occurs when
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Structural Reliability Analysis

Setting                   defines a (n-1) 
dimensional surface in the space 
spanned by the n basic variables X

This is the failure surface separating 
the sample space of X into a safe 
domain and a failure domain

The failure probability may in general 
terms be written as 
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Basics of Structural Reliability Methods

The probability of failure can be assessed 
by 

where               is the joint probability 
density function for the basic random 
variables X 

For the 2-dimensional case the failure 
probability simply corresponds to the 
integral under the joint probability density 
function in the area of failure
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Basics of Structural Reliability Methods

The probability of failure can be 
calculated using
- numerical integration 

(Simpson, Gauss, Tchebyschev, 
etc.)

but for problems involving dimensions 
higher than say 6 the numerical 
integration becomes cumbersome
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Other methods are necessary !
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Basics of Structural Reliability Methods

When the limit state function is
linear

the saftey margin M is defined
through

with
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Basics of Structural Reliability Methods

The failure probability can then be 
written as 

The reliability index is defined as 

Provided that the safety margin is 
normal distributed 
the failure probability is 
determined as 

)0()0)(( ≤=≤= MPgPPF X
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σ
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Basler and Cornell
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Basics of Structural Reliability Methods

The reliability index β has the geometrical 
interpretation of being the shortest distance 
between the failure surface and the origin in
standard normal distributed space
u

in which case the components of U have zero 
means and variances equal to 1
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Basics of Structural Reliability Methods
Example:

Consider a steel rod with resistance r
subjected to a tension force s

r and s are modeled by the random 
variables R and S

The probability of failure is wanted

35,350 == RR σμ
40,200 == SS σμ

SRg −=)(X

)0( ≤− SRP
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Basics of Structural Reliability Methods
Example:

Consider a steel rod with resistance r
subjected to a tension force s

r and s are modeled by the random 
variables R and S

The probability of failure is wanted

The safety margin is given as 

The reliability index is then

and the probability of failure

35,350 == RR σμ
40,200 == SS σμ

SRg −=)(X

)0( ≤− SRP

SRM −=
150200350 =−=Mμ

15.534035 22 =+=Mσ

84.2
15.53

150 ==β

3104.2)84.2( −⋅=−Φ=FP
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Basics of Structural Reliability Methods

Usually the limit state function is 
non-linear
- this small phenomenon caused   

the so-called invariance problem 

Hasofer & Lind suggested to linearize
the limit state function in the design 
point
- this solved the invariance 

problem

The reliability index may then be 
determined by the following 
optimization problem

Can however easily be linearized !
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Basics of Structural Reliability Methods

The optimization problem can be formulated 
as an iteration problem

1 ) the design point is determined as 

2) the normal vector to the limit state 
function is determined as

3) the safety index is determined as 

4) a new design point is determined as  

5) continue the above steps until 
convergence in
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Basics of Structural Reliability Methods

Example :

Consider the steel rod with cross-sectional 
area a and yield stress r

The rod is loaded with the tension force s

The limit state function can then be written 
as

r, a and s are uncertain and modeled by 
normal distributed random variables 

we would like to calculate the probability of 
failure 

rah ⋅=

sarg −⋅=)(x

35,350 == RR σμ
1,10 == AA σμ

300,1500 == RS σμ
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Basics of Structural Reliability Methods

The first step is to transform the 
basic random variables into 
standardized normal distributed 
space

Then we write the limit state 
function in terms of the 
realizations of the standardized 
normal distributed random 
variables
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The reliability index is
calculated as 

the components of the
α-vector are then calculate as

where
222
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following the iteration scheme
we get the following iteration
history

Iteration Start 1 2 3 4 5
β 3.0000 3.6719 3.7399 3.7444 3.7448 3.7448
αR -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610
αΑ -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610
αS 0.5800 0.5916 0.6084 0.6086 0.6087 0.6087
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The procedure can be extended to 
consider

Correlated random variables 
UYX →→

Correlated
random
variables

Un-correlated
random
variables

Translation and 
scaling Orthogonal

transformation
(rotation)

Standardized
random variables
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Correlated random variables

The covariance matrix for the random
variables is given as  

and the correlation coefficient matrix is

The first step is the standardization
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Correlated random variables

The transformation of the correlated 
random variables into non-
correlated random variables can be 
written as

where       is a lower triangular matrix

then we can write

with T standing for transpose matrix

Y = TU

T T T T T TE E E⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦Y XC Y Y T U U T T U U T T× T ρ

T
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Correlated random variables

In the case of 3 random variables we
have

As       is a lower triangular matrix we
have
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The normal-tail approximation
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Non-normal distributed random variables

Rosenblatt Transformation
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Transformation

g(Z): linear g(U): non linear

μZ1, μZ2 R μU1= μU2= 0

σZ1, σZ2 R σU1= σU2= 1

∈
∈
∈
∈
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joint probability density function

“Limit state function”

g(U) = R-S
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Start point X1
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Linearization of Limit state function in starting point
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Calculation of new design point X2
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Linearisation of Limit state
function in  X2
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Calculation of new design point X3
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Linearization of Limit state
function in  X3
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β1=3.556

β2=3.607

β3=3.608

β4=3.608

Convergency Criteria: εβββ ≤−=Δ + nn 1
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SORM Improvements
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SORM Improvements

Asymptotic Laplace integral 
solutions
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Simulation methods may also be 
used to solve the integration 
problem

1) m realizations of the vector X are    
generated

2) for each realization the value of 
the limit state function is 
evaluated

3) the realizations where the limit 
state function is zero or negative 
are counted

4) The failure probability is 
estimated as
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• Estimation of failure probabilities using
Monte Carlo Simulation
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• m random outcomes of R und S 
are generated and the number of  
outcomes nf in the failure domain
are recorded and summed

• The failure probability pf
is then
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