Exercise 1: Identity between strong form and weak form

In what follows an "informal proof" for the identity of the strong form and the weak form is given.

(W)

$$EIu_{xxxx} = 0, \quad x \in [0,1]$$
 (1)

$$EIu_{xx}(0) = Q \tag{2}$$

$$EIu_{xx}(0) = 0 \tag{3}$$

$$u(1) = 0 \tag{4}$$

$$u_{x}(1) = 0 \tag{5}$$

(S)

$$\int_{0}^{1} w_{xx} E I u_{xx} dx = w(0)Q \tag{6}$$

$$u(1) = 0 \tag{4}$$

$$u_{y}(1) = 0 \tag{5}$$

$$(W) \rightarrow (S)$$

Let w be a proper function which satisfies:

$$w(1) = 0 \tag{7}$$

$$W_{x}(1) = 0 \tag{8}$$

From equation (1) if follows:

$$0 = \int_0^1 wEIu_{xxxx} dx$$

$$= wEIu_{xxx} \Big|_0^1 - \int_0^1 w_x EIu_{xxx} dx$$

$$= -w(0)Q - w_x EIu_{xx} \Big|_0^1 + \int_0^1 w_{xx} EIu_{xx} dx \quad (\because (2), (7))$$

$$= -w(0)Q + \int_0^1 w_{xx} EIu_{xx} dx \quad (\because (3), (8))$$

Therefore, equation (6) follows.

$$(S) \rightarrow (W)$$

From equation (6), it follows:

$$\int_{0}^{1} w_{xx} E I u_{xx} dx = w(0)Q$$

$$\Rightarrow w_{x} E I u_{xx} \Big|_{0}^{1} - \int_{0}^{1} w_{x} E I u_{xxx} dx = w(0)Q$$

$$\Rightarrow -w_{x}(0) E I u_{xx}(0) - w E I u_{xxx} \Big|_{0}^{1} + \int_{0}^{1} w E I u_{xxxx} dx = w(0)Q \quad (\because (8))$$

$$\Rightarrow \int_{0}^{1} w E I u_{xxxx} dx + w(0) \Big(E I u_{xxx}(0) - Q \Big) - w_{x}(0) E I u_{xx}(0) = 0 \quad (\because (7))$$

Since w is an almost arbitrary function, equation (1) to (3) must hold.