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IntroductionIntroduction
Model the world

Data

Real Word Models

K l dKnowledge
Models are not precise
Data are not sufficient
Natural variability
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Knowledge is subjective
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IntroductionIntroduction
Uncertain and parametric model

Bayesian theorem as a inference tool

Data Prior KnowledgeData Prior Knowledge

New Knowledge
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IntroductionIntroduction
MCMC and the software package

MCMC: Markov Chain Monte Carlo

Software: Winbugs Openbugs 

Bayesian inference is applied broadly
e.g. behavioral science, finance, human health, process control and ecological
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Hierarchical modeling of variabilityHierarchical modeling of variability
Hierarchical Bayesian modeling 

∫( ) ( ) ( )1 2| dπ θ π θ ϕ π ϕ ϕ
Φ

= ∫
First-stage prior hyperprior

is the population variability in     for a given value( )1 |π θ ϕ θ ϕ

is the distribution representing the uncertainty in ( )2π ϕ ϕ
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Hierarchical modeling of variabilityHierarchical modeling of variability
Illustrative example: Poisson process

Possion process: ( ) ( )| , 0,1
!

x tt e
f x x

x

λλ
λ

−

= =
!x

We have a prior belief that there is a source-to-source variability in λ
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Hierarchical modeling of variabilityHierarchical modeling of variability
Illustrative example

Bayesian Network ( )|π λ α β
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Hierarchical modeling of variabilityHierarchical modeling of variability
Illustrative example

Winbugs Doodle modelWinbugs Doodle model
name: mu[i] type: logical link: identity

value: lamda[i]*t[i]

lamda star t[i]l d [i]

betaalpha

lamda.star t[i]

mu[i]

lamda[i]

mu[i]

for(i IN 1 : N)

x[i]

( )* | tλ
mean 
90% credible interval 

( )| ,x tπ λ
62.5 10−×

( )8 63.9 10 ,8.0 10− −× ×
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Hierarchical modeling of variabilityHierarchical modeling of variability
Illustrative example: Emergency Diesel Generators (EDG)

The failure probability        of No.1 disel is of interest. (binomial distribution)1p

( )~ ,x Bin p n ( ) ( )1 | , ,p Betaπ α β α β=
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Hierarchical modeling of variabilityHierarchical modeling of variability
Illustrative example: Emergency Diesel Generators

betaalpha

name: p.star type: stochastic density: dbeta
a alpha b beta lower bound upper bound

p.star n[i]p.fts[i]p.star

for(i IN 1 : N)

x[i]

Bayesian Network                                Winbugs Doodle model
Result: 
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Modeling of time dependent reliabilityModeling of time-dependent reliability

Modeling time trendsModeling time trends

M d li f il ith iModeling failure with repair

13/4721.10.2009
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Modeling time trendsModeling time trends

MotivationMotivation
It is sometimes the case that the usual Poisson and binomial models 
are rendered invalid because the parameter of interest  (    or    , 

ti l ) i t t t ti
λ p

respectively)  is not constant over time. 

Principal ideaPrincipal idea
Generalized Linear Model (GLM)

for      , use                            

for      , use  Logit function log
1
p a bt

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

λ ( )log a btλ = +

p , g

if         , there is no time trend

1 p⎜ ⎟−⎝ ⎠

0b =

p
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if         ,    or     is increasing over time.0b > p λ
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Modeling time trendsModeling time trends

Example: valve leakage 
if there appears to be any systematic time trend in p

15/4721.10.2009
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Modeling time trendsModeling time trends

Example: valve leakage 
To check the clouds in our mind, we don’t use any GLM 
model firstly, instead we update the Jeffreys prior with the 
data for each year, the result is:

It looks likes that there is an
increasing trend with time,
but significant uncertainty     
in the individual estimates  
clouds this conclusion.
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Modeling time trendsModeling time trends

Example: valve leakage
Take the GLM to check, logit function

Restult:

bb

17/4721.10.2009

Density is highest for          , suggesting an increasing trend in   0b > p
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Modeling of time dependent reliabilityModeling of time-dependent reliability

Modeling time trendsModeling time trends

M d li f il ith iModeling failure with repair
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Modeling failure with repairModeling failure with repair
Motivation 

• Most of repair model is focus on “same as new” 
assumption, under the assumption of that the stochastic 
point process being observed is a renewal process Lesspoint process being observed is a renewal process. Less 
work has addressed the more reasonable assumption that 
repairs make the component “same as old”.repairs make the component same as old . 

• Under the “same as new” assumption the times betweenUnder the same as new  assumption, the times between 
failures are independently, and identically distributed (iid). 
Under the “same as old” assumption for repair, the inter-
arrival times are not iid; the distribution for the ith time is 
dependent upon the i-1th time. 

19/4721.10.2009
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Modeling failure with repairModeling failure with repair
Principal idea
for Poisson process: 

( )
( )( )

( )( )0 exp

xt

t
t dt

f x t dt
λ

λ= −
∫

∫

If         is constant, it is the homogenous Poisson process (HPP) ;
if is dependent on time it is the nonhomogenous Poisson

( ) ( )( )0
exp

!
f x t dt

x
λ∫

( )tλ

( )tλif         is dependent on time, it is the nonhomogenous Poisson 
process (NHPP) ;

( )

( )if          is increasing with time, the times between failures are 
decreasing with time; the component is aging or wearing out. 
If is decreasing with time the times between failures are

( )tλ

( )tλIf          is decreasing with time, the times between failures are 
increasing with time, the component is experiencing reliability growth.    

( )
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Modeling failure with repairModeling failure with repair
Principal idea
Common form to model         include power-law process:       

( )
1

tt
α

αλ
β β

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

( )tλ

the loglinear model

( )
β β⎜ ⎟
⎝ ⎠

( ) ( )

and the linear model

( ) ( )expt a btλ = +

( )t a btλ = +
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Modeling of random durationModeling of random duration

Motivation
• The simplest stochastic model for applications where time is the 

random variable of interest  is the exponential distribution, which 
h i i d dmeans that time-independent rate.

• There are numerous applications for time-dependent case, e.g. the 
rate of recovering offsite ac power at a commercial nuclear plant is g p p
often a decreasing function of time after power is lost, analyst is led to 
models that allow for time-dependent recovery rates, e.g. Weibull or 
lognormal distributionlognormal distribution.

• Bayesian inference is more complicated when the likelihood function 
is other than exponential. The difficulty of Bayesian approach has led 

l t t f ti t th d h MLE Th d t fanalyst to use frequentist methods, such as MLE. The advent of 
Winbugs allows a fully Bayesian approach to the problem to be 
implemented. 

23/4721.10.2009
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Modeling of random durationModeling of random duration
Illustrative Example: Recovery of offsite ac power

Use Weibull and lognormal distribution to model the 

24/4721.10.2009

g
rocovery time
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Modeling of random durationModeling of random duration
Illustrative Example: Recovery of offsite ac power

Use Weibull and lognormal distribution to model the model the 
tirocovery time.

We are interested in parameters: 
Weibull distribution: (shape) (scale)α β

25/4721.10.2009

Weibull distribution:          (shape) ,     (scale)

Lognormal distribution: 

α β

,μ σ
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Modeling of random durationModeling of random duration
Illustrative Example: Recovery of offsite ac power

MLE result:

Bayesian result:
for Weibull

for Lognormalfor Lognormal

26/4721.10.2009
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Modeling of random durationModeling of random duration
Illustrative Example: Recovery of offsite ac power
Bayesian result:

for Weibull distribution

It is shown that the posterior distribution of       has significant 
probability mass centered about 1 0 indicating that an exponential

α

27/4721.10.2009

probability mass centered about 1.0, indicating that an exponential 
distribution might be a reasonable model.
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Treatment of uncertain and missing dataTreatment of uncertain and missing data

MotivationMotivation
• It is common in risk applications to encounter situations in which the 

observed data, which would normally enter into Bayes’ theorem via the 
lik lih d f ti ith i i th t l t klikelihood function, are either missing or the exact values are not known 
with certainty.

• Bayesian framework supplies a good tool for this case. We can simply 
assign the parameter of interest with a distribution that quantifies our 
available information again reinforcing the idea that the Bayesianavailable information, again reinforcing the idea that the Bayesian 
methodology encodes information via probability distribution. 

29/4721.10.2009
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Treatment of uncertain and missing dataTreatment of uncertain and missing data
Illustrative example: motor-operated valves failing to open 

d don demand

The number of demands is nominally 381, but could have been as high 
as about 440, and as low as 275. Assume that we have seen four 
failures to open.  p

How to estimate the probability of failure      ?p

30/4721.10.2009
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Treatment of uncertain and missing dataTreatment of uncertain and missing data
Illustrative example: motor-operated valves failing to open 

d don demand
Assign the demand number 
Gi th f il b bilit J ff i ( )0 5 0 5B

( )~ 275, 440n U
Give the failure probability a Jeffrey prior

Result:
mean: 0 01284

( )~ 0.5, 0.5p Beta

mean: 0.01284
95% credible interval(0.003738, 0.02804)

Comparison result: ( n use 381)
mean: 0.01179
95% dibl i t l(0 003604 0 02483)95% credible interval(0.003604, 0.02483)

4 0.01050
381

=

31/4721.10.2009
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Treatment of uncertain and missing dataTreatment of uncertain and missing data
Illustrative example: motor-operated valves failing to open 

d don demand
If we don’t know the failure number exactly, we take it as a uncertain 
value and assume it could be 3 4 5 or 6 with ( ) ( )Pr 3 0.1,Pr 4 0.7,Pr(5) 0.15= = =value, and assume it could be 3, 4, 5, or 6, with
and                . 

( ) ( )Pr 3 0.1,Pr 4 0.7,Pr(5) 0.15

( )Pr 6 0.05=

32/4721.10.2009
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Treatment of uncertain and missing dataTreatment of uncertain and missing data
Illustrative example: motor-operated valves failing to open 

d don demand
. 

( ) ( ) ( ) ( ) ( )| ,
| Pupper

N n if x p n p
d

π
⎡ ⎤
⎢ ⎥∑ ∫

Result:

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
1

0

|
| , Pr

| ,

pp

upperlower

lower

i
avg inn

i
in

f p p
p x n n dn x

f x p n p n dndp
π π

π π
∞

=

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∫
∫ ∫

If 
mean: 0.01371

( )~ 2 7 5 , 4 4 0n U

95% credible interval: (0.003759, 0.0302)

If n=381If n=381
mean: 0.0122
95% credible interval: (0.003495, 0.02609)
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Bayesian Regression modelsBayesian Regression models

Regression model
The unknown parameters denoted as β; this may be a scalar or a vector of length k

The independent variables, X

The dependent variable, Y.

( ),Y f Xβ=

Regression model could be used to predict the value of interest which 
will provide information to decision-maker prior.

Bayesian Regression Model
The analysis was frequentist  in nature, probability distributions y q p y

representing epistemic uncertainty in the input parameters were not 
available.  The Bayesian perspective is needed to operate the 
regression process.

35/4721.10.2009

regression process.
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Bayesian Regression modelsBayesian Regression models
Illustrative example: predict model for ill-fated launch of Challenger in 
January 1986January 1986
There are six O-rings on the shuttle, during each launch, the number of 

distress events  defined as erosion or blow-by of a primary field O-ring, 
i d l d bi i l ith t d 6p ( 6)X Binomial pis modeled as binomial with parameters        and 6:
Use regression model:

p ~ ( ,6)X Binomial p

logit(p) = a+b *temp + c*press

To predict the distress events at
31 which is the approximate
temperat re for the disastro s

F
temperature for the disastrous 
launch of the Challenger.

36/4721.10.2009
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Bayesian Regression modelsBayesian Regression models
Illustrative example: predict model for ill-fated launch of Challenger in 
January 1986January 1986

logit(p) = a+b *temp + c*press

Result:

the model predicts about 4 distress events at 31 F

logit(p) = a+b *temp

37/4721.10.2009
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Model selection and validationModel selection and validation

Motivation

Bayesian posterior predictive statistics and Bayesian p-Bayesian posterior predictive statistics and Bayesian p
value

Deviance information criterion (DIC)

39/4721.10.2009
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Model selection and validationModel selection and validation

Motivation

• If the selected prior distribution is appropriate? How toIf the selected prior distribution is appropriate? How to 
check it?

• If there are some random models for candidate to model 
the variability, which one is more appropriate? How to check 
it? 

40/4721.10.2009
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Model selection and validationModel selection and validation

• To solve these problem, summary statistics derived from the p , y
posterior predictive distribution provides a very good tool, 
such as Bayesian      and Cramer-von Mises statistic, which 2χ

lead to a Bayesian analog of p-value.

• The deviance information criterion (DIC), a Bayesian analog 
of a penalized likelihood measure also provides a good 
framework for the model selectionframework for the model selection. 

41/4721.10.2009
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Bayesian posterior predictive statistics and Bayesian p-valueBayesian posterior predictive statistics and Bayesian p value
Bayesian 

th b d l f t f th b d t ti ti

2χ

use the observed values of      to form the observed statistic:x
( )2

,2
2

obs i i
obs

i i

x
x

μ
σ
−

=∑
generate replicate values of      from its posterior predictive distribution 
to construct an analogous statistic:

i i

x

( )2

is the ith mean value is the ith variance

( )2

,2
2

rep i i
rep

i i

x
x

μ

σ

−
=∑

μ 2σis the ith mean value,      is the ith variance.

If the model is very good,   p-value                         should be around 0.5. 

iμ iσ

( )2 2Pr rep obsχ χ≥y g p

If we want to judge the model validation, we can set the cutoff, we will 
reject a model with a p value to below the cutoff We also can select a

( )p

42/4721.10.2009

reject a model with a p-value to below the cutoff.  We also can select a 
model from many candidate models whose p-value is closest to 0.5
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Bayesian posterior predictive statistics and Bayesian p-valueBayesian posterior predictive statistics and Bayesian p value
Cramer-von Mises statistics     
Rank the observed data as

( ) ( ) ( )1 2 N

x x x≤ ≤ ≤xRank the observed data      as                                          
construct statistic

obs obs obsx x x≤ ≤ ≤

22 1i⎛ ⎞

obsx

( )where
generate replicate values of      from its posterior predictive distribution , 
then rank the replicate value as to construct an

,
2 1
2obs obs i

i

iD F
N
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
∑

repx

( )( ), Pr
i

obs i obsF X x= <

( ) ( ) ( )1 2 Nthen rank the replicate value as                                    to construct an 
analogous statistic:

22 1i⎛ ⎞

( ) ( ) ( )1 2 N

rep rep repx x x≤ ≤ ≤

( )where,
2 1
2rep rep i

i

iD F
N
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
∑ ( )( ), Pr

i

rep i repF X x= <

p-value is ( )Pr rep obsD D≥
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Bayesian posterior predictive statistics and Bayesian p-valueBayesian posterior predictive statistics and Bayesian p value
Illustrative example: source to source variability

th t t i blλ λassume the constant                           assume variableλ λ

P-value  

44/4721.10.2009
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Model selection and validationModel selection and validation
Deviance information criterion (DIC)

• The DIC is a hierarchical modeling generalization of the AIC (Akaike  
Information  Criterion) and BIC (Bayesian Information Criterion). It is 
particularly useful in Bayesian model selection problems where the p y y p
posterior distributions of the models have been obtained by (MCMC) 
simulation. 

• Define the deviance as is the likelihood( ) ( )( )2log |D p yθ θ= − ( )|p y θ• Define the deviance as                                     ,             is the likelihood 
function . The expectation                          is a measure of how well the 
model fits the data; the larger this is, the worse the fit.  The effective 

b f t f th d l i t d i

( ) ( )( )2log |D p yθ θ= ( )|p y θ

( )D E Dθ θ= ⎡ ⎤⎣ ⎦

( )D D θnumber of parameters of the model is computed as                       .      is 
the expectation of     . The deviance information criterion is calculated 
as:

( )Dp D D θ= − θ
θ

R l Th ll th DIC i th b tt th d l fit

( )2DDIC p D D D θ= + = −
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Rule:  The small the DIC is, the better the model fit.
DIC can be get from Winbugs.



Institute of Structural Engineering
Group of Risk and Safety  

Eidgenossische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Summary and conclusionSummary and conclusion
• A variety of other “model of the world” are amenable to inference via 

Bayes’ theorem including Bayesian belief networks(BBN) influenceBayes  theorem , including Bayesian belief networks(BBN), influence 
diagram, and fault tree.

• Uncertain parameters (in the epistemic sense) are inputs to the models 
used to infer the values of future observations, leading to an increase in 
scientific knowledge.g

• The advent of MCMC-based sampling methods, coupled with easy-to-
ft d f l t ll t d i f tiuse software and powerful computers, allows us to encode information 

via Bayes’ Theorem for a large variety of problems, domains, model 
types, data sets, and complications.

• It is best done via Bayesian inference with modern computational tools, 
which eliminate the need for the approximations and ad hoc approaches
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which eliminate the need for the approximations and ad hoc approaches 
of the past.



Institute of Structural Engineering
Group of Risk and Safety  

Eidgenossische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

47/4721.10.2009


