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Introduction

» Uncertain and parametric model

» Bayesian theorem as a inference tool
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Introduction

» MCMC and the software package
MCMC: Markov Chain Monte Carlo
Software: Winbugs Openbugs

» Bayesian inference is applied broadly

e.g. behavioral science, finance, human health, process control and ecological
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Hierarchical modeling of variability

» Hierarchical Bayesian modeling

First-stage prior hyperprior

7.(01¢) is the population variability in ¢ for a given value @

7(¢) is the distribution representing the uncertainty in @
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Hierarchical modeling of variability

ifolH

» lllustrative example: Poisson process

Yo At
Possion process: f(x|A)= (A1) e

We have a prior belief that there is a source-to-source variability in 4,

Source

,x=0,1

x!

Failures

Exposure time ( h)

DO~ auU bk WN =

10
11
12

Nbhb= U000 WmMO=0O

87,600
525,600
394,200

87,600

4,555,200
306,600
394,200
569,400

1,664,400
3,766,800
3,241,200

1,051,200

Assuming 7, (l | go) =T, (/1 | 05,,3) ~ Gamma(a,ﬂ)
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Hierarchical modeling of variability

» lllustrative example
Bayesian Network

ﬂz(a,ﬂ\;c,f)ocf(a,ﬂ,;cj)zj:j:---j:[ﬁﬂl(ii|a B J a, Hf(x |44 dA,
z(4 |5c,;) - L‘” jo“’ . I:{”{H”M , ﬁ)}q(f | ) ﬂz(a, Bl },Z)dadﬁ}

xdAdA,dA_dA, -dAdA
=[[7(4|xt.0.8) 7 (o Bl x.t) dod p
7z</1* xt)=[[7(1 | ﬁ,}j)% (a, /3|5c,2)dadﬁ
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Hierarchical modeling of variability

» lllustrative example
Winbugs Doodle model

t[i]

name: mul[i] type: logical link: identity 4e+05
value: lamdali]*t[i]
-

\ 2e+05

S
@ ST

for(i IN 1 : N) I I I
0e+00 2e-06 4e-08 6e-06 8e-06 1e-05

(A" xt)
mean 2.5x10°°

90% credible interval (3.9x10°,8.0x10)
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Hierarchical modeling of variability
> lllustrative example: Emergency Diesel Generators (EDG)

EDG Failures Successes Demands
1 0 140 140
2 0 130 130
3 0 130 130
4 1 129 130
5 2 98 100
6 3 182 185
7 3 172 175
3 4 163 167
9 5 146 151
10 10 140 150
Total 28 1430 1458

The failure probability P; of No.1 disel is of interest. (binomial distribution)

x~Bin(p,n) =,(pl|a,B)=Beta(a,p)
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Hierarchical modeling of variability
> lllustrative example: Emergency Diesel Generators

name:

Bayesian Network Winbugs Doodle model
Result:
5th 50th 95th Mean
Empirical Bayes 4.7E-04 4 4E-03 1.7E-02 5.9E-03
Two-stage Bayes 1.2E-04 3.3E-03 1.8E-02 5.2E-03
Hierarchical Bayes 5.9E-05 4 5E-03 1.9E-02 6.3E-03
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Modeling of time-dependent reliability

» Modeling time trends

» Modeling failure with repair

21.10.2009 13/47



Modeling time trends

» Motivation

It is sometimes the case that the usual Poisson and binomial models
are rendered invalid because the parameter of interest (1 or 7,
respectively) is not constant over time.

» Principal idea
Generalized Linear Model (GLM)
for 4 , use log(A)=a+bt

for p , use Logit function 10g(£]=a+bt

if =0  there is no time trend
if >0, p or4 isincreasing over time.
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Modeling time trends

» Example: valve leakage
if there appears to be any systematic time trend in »

Valve leakage data

Year Number of failures Demands
1 4 52
& 2 52
3 3 52
4 1 52
5 4 52
6 3 52
7 4 52
8 9 52
9 6 52
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Modeling time trends

» Example: valve leakage

To check the clouds in our mind, we don’t use any GLM
model firstly, instead we update the Jeffreys prior with the
data for each year, the result is:

caterpillar plot: p I

(1]

2 " It looks likes that there is an

[3]

@ Increasing trend with time,
but significant uncertainty
” In the individual estimates

(8]

o clouds this conclusion.

T T T T
0.0 0.1 0.2 0.3
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Modeling time trends

Example: valve leakage
Take the GLM to check, logit function

caterpillar plot: p
5 —e— [[1]
b
—e— 2]
4 —e—[3]
—e—[4]
3 ———— [5]
—e [6]
——e—[7]
2 —
— e [8]
[©1
=
[10]
0 _[ | : | : | : 0.0 01 0.2 03
-02 -01 oo 0.1 02 03 04 P

Density is highest for >0, suggesting an increasing trend in »
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Modeling of time-dependent reliability

» Modeling time trends

» Modeling failure with repair
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Modeling failure with repair

» Motivation

* Most of repair model is focus on “same as new”
assumption, under the assumption of that the stochastic
point process being observed is a renewal process. Less
work has addressed the more reasonable assumption that
repairs make the component “same as old”.

« Under the “same as new” assumption, the times between
failures are independently, and identically distributed (iid).
Under the “same as old” assumption for repair, the inter-
arrival times are not iid; the distribution for the ith time is
dependent upon the i-1th time.
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Modeling failure with repair

» Principal idea

for Poisson process:

(%)= (J.Ol(f)dt) exp(—jotﬂ,(t)dt)

x!

|f /1(’«‘) is constant, it is the homogenous Poisson process (HPP) ;

if /W) is dependent on time, it is the nonhomogenous Poisson
process (NHPP) ;

if A(¢) is increasing with time, the times between failures are
decreasing with time; the component is aging or wearing out.

|f ﬂ(f) is decreasing with time, the times between failures are

increasing with time, the component is experiencing reliability growth.

21.10.2009
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Modeling failure with repair

» Principal idea

Common form to model A(¢) include power-law process:

_g L a-1

M‘ﬂ(ﬂj

the loglinear model
A(t)=exp(a+bt)

and the linear model

A(t)=a+bt
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Modeling of random duration

» Motivation

The simplest stochastic model for applications where time is the
random variable of interest is the exponential distribution, which
means that time-independent rate.

There are numerous applications for time-dependent case, e.g. the
rate of recovering offsite ac power at a commercial nuclear plant is
often a decreasing function of time after power is lost, analyst is led to
models that allow for time-dependent recovery rates, e.g. Weibull or
lognormal distribution.

Bayesian inference is more complicated when the likelihood function
is other than exponential. The difficulty of Bayesian approach has led
analyst to use frequentist methods, such as MLE. The advent of
Winbugs allows a fully Bayesian approach to the problem to be
implemented.

21.10.2009
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Modeling of random duration
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> lllustrative Example: Recovery of offsite ac power

Use Weibull and lognormal distribution to model the

Times to recover offsite ac power for grid-related disturbances

Site Date Potential recovery
time {min)
Davis-Besse 14/8/2003 657
Fermi 14/8/2003 384
Fitzpatrick/nine mile point 1 14/8/2003 142
Ginna 14/8/2003 54
Indian point 16/6/1997 42
Indian point 14/8/2003 102
Nine mile point 2 14/8/2003 110
Palo verde 14/6/2004 37
Peach bottom 15/9/2003 16
Perry 14/8/2003 87
Summer 11/7/1989 100
Vermont yankee 17/8/1987 17

rocovery time

21.10.2009
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Modeling of random duration

ifolH

> lllustrative Example: Recovery of offsite ac power

Use Weibull and lognormal distribution to model the model the
rocovery time.

Times to recover offsite ac power for grid-related disturbances

Site Date Potential recovery
time (min)
Davis-Besse 14/8/2003 657
Fermi 14/8/2003 384
Fitzpatrick/nine mile point 1 14/8/2003 142
Ginna 14/8/2003 54
Indian point 16/6/1997 42
Indian point 14/8/2003 102
Mine mile point 2 14/8/2003 110
Palo verde 14/6/2004 37
Peach bottom 15/9/2003 15
Perry 14/8/2003 87
Summer 11/7/1989 100
Vermont yankee 17/8/1987 17

We are interested in parameters:

Weibull distribution:

(04

Lognormal distribution:

21.10.2009
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Modeling of random duration

> lllustrative Example: Recovery of offsite ac power
MLE result:

Weibull: x (shape) = 0.929, f (scale)=2.332h
Lognormal: i« = 0.300, o = 1.064

Bayesian result:

for Weibull

Parameter Posterior mean 90% credible interval
3 0914 |0.812, 1.254)

fi 2.58 (1.343, 4.299)

for Lognormal

Parameter Posterior mean 00% interval
1 0.299 (-0.269, 0.886)
& 1.194 (0.833, 1.725)

21.10.2009
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Modeling of random duration

> lllustrative Example: Recovery of offsite ac power
Bayesian result:
for Weibull distribution

2.0 ;/_M“*-.\

alpha

It is shown that the posterior distribution of @ has significant
probability mass centered about 1.0, indicating that an exponential
distribution might be a reasonable model.
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Treatment of uncertain and missing data

> Motivation

« Itis common in risk applications to encounter situations in which the
observed data, which would normally enter into Bayes’ theorem via the
likelihood function, are either missing or the exact values are not known
with certainty.

« Bayesian framework supplies a good tool for this case. We can simply
assign the parameter of interest with a distribution that quantifies our
available information, again reinforcing the idea that the Bayesian
methodology encodes information via probability distribution.
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Treatment of uncertain and missing data

» lllustrative example: motor-operated valves failing to open
on demand

The number of demands is nominally 381, but could have been as high

as about 440, and as low as 275. Assume that we have seen four
failures to open.

How to estimate the probability of failure P ?
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Treatment of uncertain and missing data

» lllustrative example: motor-operated valves failing to open
on demand

Assign the demand number 5 ~ U (275,440)

Give the failure probability a Jeffrey prior p ~ Beta (0.5,0.5)
Result:

mean: 0.01284

95% credible interval(0.003738, 0.02804)

Comparison result: ( n use 381)
mean: 0.01179
95% credible interval(0.003604, 0.02483)

A 0.01050
381
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Treatment of uncertain and missing data

» lllustrative example: motor-operated valves failing to open
on demand

If we don’t know the failure number exactly, we take it as a uncertain
value, and assume it could be 3, 4, 5, or 6, with Pr(3)=0.1,Pr(4)=0.7,Pr(5)=0.15

and Pr(6)=0.05.
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Treatment of uncertain and missing data

» lllustrative example: motor-operated valves failing to open

on demand
< Mupper f(xz |p,l’l)7l'(p)
o (Plxn)= — dn |Pr(x,
olplen) =2 |, [ Lupmf()%|P,n)7z(p)7r(n)dndpﬂ(n) " [P
Result: ) ]

If n~U (275,440)
mean: 0.01371
95% credible interval: (0.003759, 0.0302)

If Nn=381
mean: 0.0122
95% credible interval: (0.003495, 0.02609)
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Bayesian Regression models

» Regression model
The unknown parameters denoted as ; this may be a scalar or a vector of length k
The independent variables, X

The dependent variable, Y.

Y=71(8,X)

Regression model could be used to predict the value of interest which
will provide information to decision-maker prior.

» Bayesian Regression Model

The analysis was frequentist in nature, probability distributions
representing epistemic uncertainty in the input parameters were not
available. The Bayesian perspective is needed to operate the
regression process.

21.10.2009 35/47



[

Bayesian Regression models
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» lllustrative example: predict model for ill-fated launch of Challenger in

January 1986

There are six O-rings on the shuttle, during each launch, the number of
distress events defined as erosion or blow-by of a primary field O-ring,
is modeled as binomial with parameters p and 6: X ~ Binomial(p,6)

Use regression model:

logit(p) = a+b *temp + c*press

To predict the distress events at

21.10.2009

31°F which is the approximate
temperature for the disastrous
launch of the Challenger.
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Bayesian Regression models

» lllustrative example: predict model for ill-fated launch of Challenger in
January 1986

logit(p) = a+b *temp + c*press

Result:
Parameter Mean Standard dev. 95% credible interval
a (intercept) 2.24 3.74 {(—4.71,9.92)
b (temp. coeff.) —0.105 0.05 {—0.20, —0.02)
c (press. coefl.) 0.01 0.009 (—0.004, 0.03)

the model predicts about 4 distress events at 31" F

logit(p) = a+b *temp

21.10.2009 37147



Content

» Hierarchical modeling of variability

» Modeling of time-dependent reliability

» Modeling of random duration

» Treatment of uncertain and missing data
» Bayesian Regression models

» Model selection and validation (8)

» Summary and conclusion

21.10.2009 38/47



Model selection and validation

» Motivation

» Bayesian posterior predictive statistics and Bayesian p-
value

» Deviance information criterion (DIC)
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Model selection and validation

» Motivation

» |f the selected prior distribution is appropriate? How to
check it?

 |fthere are some random models for candidate to model

the variability, which one is more appropriate? How to check
it?
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Model selection and validation

« To solve these problem, summary statistics derived from the
posterior predictive distribution provides a very good tool,
such as Bayesian ¥~ and Cramer-von Mises statistic, which
lead to a Bayesian analog of p-value.

« The deviance information criterion (DIC), a Bayesian analog
of a penalized likelihood measure also provides a good

:lﬁAIM I ~n N

IA [} 'Y
IIdIIIUVVUH\ IUI LIIU IIIUUUI OCICULIVINL.
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> Bayesian ¥’

use the observed values of x to form the observed statistic:
2

2 (xobs,i o lLll)
KXobs = Z 2

i oF

]

generate replicate values of X from its posterior predictive distribution
to construct an analogous statistic:

2
xz . Z (’xrep,i o /ul)
rep 2

74 i o

1

Lt is the ith mean value, o; is the ith variance.
If the model is very good, p-value Pr()(rep 2 (fbs) should be around 0.5.

If we want to judge the model validation, we can set the cutoff, we will
reject a model with a p-value to below the cutoff. We also can select a
model from many candidate models whose p-value is closest to 0.5
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Bayesian posterior predictive statistics and Bayesian p-value

nr
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» Cramer-von Mises statistics

(M (2 (V)

Rank the observed data x,as x , <x, <---<Xx
construct statistic

2i—1 ? (i)
D, = Z[Fobs,i TN j where F,, ;= PT(X < xobs)

generate replicate values of xrepfrom its posterior predictive distribution ,

then rank the replicate value as "' < x(;), <. <x. to construct an

analogous statistic: o

2i—1Y 0
Drep :Z(F;ep,i o 2N j Where Efepz _P (X<xrep)

i

p-valueis Pr(D,,>D,, )
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» lllustrative example: source to source variability

assume the constant A assume variable A
0.10 - 0.10 f'\,
A
0.08 - Replicated 0.08 } ‘ Observed
| [
0.06- | 0.06 ) Replicated
0.04 |/ Observed 0.04 - l
0.02- |} 0.02 - ;
0.00 - -) 0.00
[r] 20 4To 60 80 100 ) 20 40 60 80 100
chi-square chi-square
P-value
Model Bayesian p-value
Variable £ 046
Constant A 0.002
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Model selection and validation

» Deviance information criterion (DIC)

« The DIC is a hierarchical modeling generalization of the AIC (Akaike
Information Criterion) and BIC (Bayesian Information Criterion). It is
particularly useful in Bayesian model selection problems where the
posterior distributions of the models have been obtained by (MCMC)
simulation.

- Define the deviance as D(6)=-2log(p(y16)), p(¥19) is the likelihood
function . The expectation p = E, [D(Q)] is a measure of how well the
model fits the data; the larger this is, the worse the fit. The effective
number of parameters of the model is computed as p, =B—D(§). g is
the expectation of 8 . The deviance information criterion is calculated
as:

DIC = p,+D=2D-D(0)

Rule: The small the DIC is, the better the model fit.
DIC can be get from Winbugs.
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Summary and conclusion

» A variety of other “model of the world” are amenable to inference via
Bayes' theorem , including Bayesian belief networks(BBN), influence
diagram, and fault tree.

» Uncertain parameters (in the epistemic sense) are inputs to the models
used to infer the values of future observations, leading to an increase in
scientific knowledge.

« The advent of MCMC-based sampling methods, coupled with easy-to-
use software and powerful computers, allows us to encode information
via Bayes’ Theorem for a large variety of problems, domains, model
types, data sets, and complications.

» ltis best done via Bayesian inference with modern computational tools,
which eliminate the need for the approximations and ad hoc approaches
of the past.
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