Implications of vulnerability to hurricane damage for long-term survival of tropical tree species: a Bayesian hierarchical analysis

Asif Qureshi and Alex Erath

PhD-Seminar on *"Probabilistics in Engineering: Bayesian networks and Bayesian hierarchical analysis in engineering"*

9 December 2009

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Agenda

Introduction

- Hurricane
- Tree species

Field Study

Modeling Methods

- Single species
- Multi species + spatial variability

Results

- Model comparison and selection
- Species specific analysis
- Spatial correlation

Conclusion

- Strengths of the approach
- Limitations and future research

Introduction

- Caribbean Islands
 - Hurricanes
- Authors use Hurricane Hugo data
 - Sep 10-25, 1989
 - Max winds: 160 mph
- Test hypothesis
- Individual tree survives the posthurricane recovery period
 - Taxonomy
 - Tree size and crowding
 - Influence of hurricane damage on tree survival
- Consider four species

Tree species

Caesaria arborea Alchornea latifolia Dacryodes excelsa Manilkara bidentata

Field study

- 16-ha recovery plot in Puerto Rico
- Survey conducted for 4-5 months
 - Assess all trees >= 10 cm in diameter at breast height (DBH; ~ 1.3 m from ground) for degree of damage
 - Damage D = 0, 1, 2
 - After ~3.5 years another census
 - All trees >= 1 cm DBH
 - Survival S = 0,1
- Note: do not consider immediate mortality

Modeling

- Single species model
 - Likelihood functions

Damage Survival

$$L(D_i, S_i | \alpha, \beta, DBH_i, BA_i) =$$

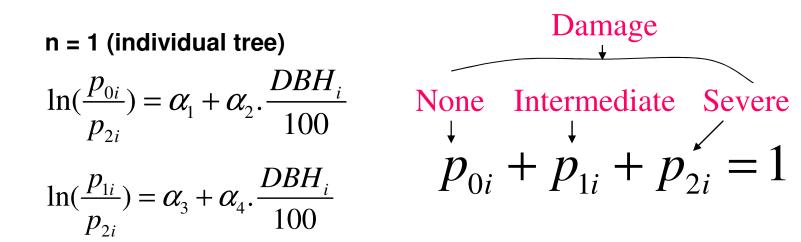
 $L(D_i | \alpha, DBH_i)L(S_i | \beta, D_i, DBH_i, BA_i)$

 α = Defines relationship between DBH and prob. of tree receiving no, medium or heavy damage

 β = prob. of remaining alive between surveys to tree size, crowding, and level of damage suffered by hurricanes

Marginal likelihood for damage

 $D_i \sim Multin(n, p_{0i}, p_{1i}, p_{2i} \mid \alpha, DBH_i)$



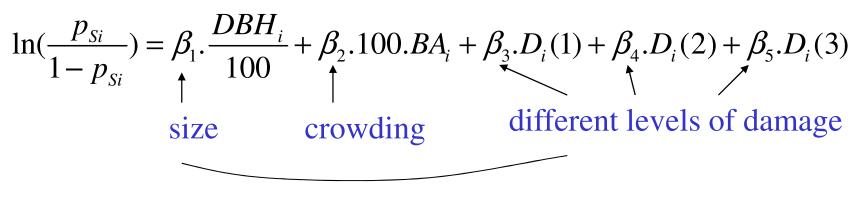
1. Single species modeling...WinBUGS demonstration

Conditional likelihood for survival

 $S_i \sim Bern(p_{Ti} \mid \beta, D_i, DBH_i, BA_i)$

 $p_{\rm Ti}$ is the probability of tree surviving the entire census period, which depends on

 $p_{\rm Si}$ which is the prob. of survival from one year to next



 $\beta = effect of$

1. Single species modeling...WinBUGS demonstration

1. Single species: Posterior

- Goal is to estimate α and β
- The joint posterior density is proportional to likelihood, multiplied by the prior

$$P(\alpha, \beta \mid D, S, DBH, BA)$$

$$\propto (\prod_{i=1}^{N} L(D_i, S_i \mid \alpha, \beta, DBH_i, BA_i) \pi(\alpha, \beta))$$

N = total number of trees,

 $\pi(\alpha, \beta)$ is the prior density function for α and β , described by independent normal priors for α and β $\alpha \sim No(0,100.I)$ and $\beta \sim No(0,100.I)$

2. Multispecies model

- Likelihood functions are the same, with the indices now referring to the ith tree of the jth species
- More differences in the posterior
 - Posterior densities for α, β and γ are proportional to likelihood multiplied by first-stage prior and hyperprior

$$P(\alpha_{1},...,\alpha_{J},\beta_{1},...,\beta_{J},\gamma \mid D,S,DBH,BA)$$

$$\alpha(\prod_{j=1}^{J}\prod_{i=1}^{N_{j}}L(D_{ij},S_{ij}\mid\alpha_{j},\beta_{j},\gamma,DBH_{i},BA_{i})\times$$

$$\pi(\alpha_{1},...,\alpha_{J},\beta_{1},...,\beta_{J}\mid\gamma).\pi(\gamma)$$

 J = total number of species and N_i is the number of trees identified as species j.

$$\gamma = (\mu_{\alpha}, \mu_{\beta}, \sigma_{\alpha}, \sigma_{\beta})$$
$$\pi(\alpha_{1}, ..., \alpha_{J}, \beta_{1}, ..., \beta_{J} \mid \gamma)$$

is broken up to nine independent first-stage priors

$$\begin{aligned} \boldsymbol{\alpha}_{1j} \sim No(\boldsymbol{\mu}_{\alpha 1}, \boldsymbol{\sigma}_{\alpha 1}^{2}), ..., \boldsymbol{\alpha}_{4j} \sim No(\boldsymbol{\mu}_{\alpha 4}, \boldsymbol{\sigma}_{\alpha 4}^{2}) \\ \boldsymbol{\beta}_{1j} \sim No(\boldsymbol{\mu}_{\beta 1}, \boldsymbol{\sigma}_{\beta 1}^{2}), ..., \boldsymbol{\beta}_{5j} \sim No(\boldsymbol{\mu}_{\beta 5}, \boldsymbol{\sigma}_{\beta 4}^{2}) \end{aligned}$$

3. Multispecies model with spatial variability

 Likelihood functions are the same, but with one additional parameter for ith tree of the jth species growing in the kth quadrant.

 $L(D_{ijk}, S_{ijk} | \alpha_j, \beta_j, \varphi_k, DBH_i, BA_i) = L(D_{ijk} | \alpha_j, \varphi_k, DBH_i) \times L(S_{ijk} | \beta_j, D_{ijk}, DBH_i, BA_i)$

The marginal likelihood for damage is

$$\begin{split} D_{ijk} &\sim Multin(n, p_{0ijk}, p_{1ijk}, p_{2ijk} \mid \alpha_j, DBH_i, \varphi_k) \\ \ln(\frac{p_{0ijk}}{p_{2ijk}}) &= \alpha_{1j} + \alpha_{2j} \cdot \frac{DBH_i}{100} + \varphi_{1k} \\ \ln(\frac{p_{1ijk}}{p_{2ijk}}) &= \alpha_{3j} + \alpha_{4j} \cdot \frac{DBH_i}{100} + \varphi_{2k} \end{split}$$

2. Multispecies species modeling...WinBUGS demo

3. Posterior: Multispecies model with spatial variability

$$P(\alpha_{1},...,\alpha_{J},\beta_{1},...,\beta_{J},\varphi_{1},...,\varphi_{Q},\gamma,\tau \mid D,S,DBH,BA)$$

$$\alpha(\prod_{k=1}^{Q}\prod_{j=1}^{J}\prod_{i=1}^{N_{jk}}L(D_{ijk},S_{ijk}\mid\alpha_{j},\beta_{j},\varphi_{k},\gamma,DBH_{i},BA_{i})\times$$

$$\pi(\alpha_{1},...,\alpha_{J},\beta_{1},...,\beta_{J}\mid\gamma).\pi(\varphi_{1},...,\varphi_{Q}\mid\tau).\pi(\gamma).\pi(\tau)$$

Where Q is the number of quadrats, and N_{jk} is the number of trees of species j in the quadrat k.

Model 1: Severe damage $\ln\left(\frac{p_{0i}}{p_{2i}}\right) = \alpha_1 + \alpha_2 \cdot \frac{\text{DBH}_i}{100}$ Moderate damage $\ln\left(\frac{p_{1i}}{p_{2i}}\right) = \alpha_3 + \alpha_4 \cdot \frac{\text{DBH}_i}{100}$

Model 2:

Hierarchical analysis

-> α_1 , α_2 , α_3 , α_4 become tree specific

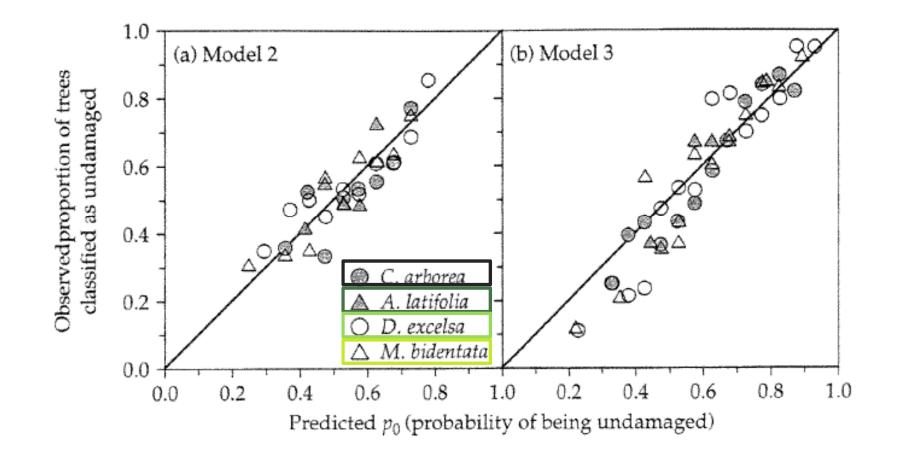
Model 3: Spatial correlation with Gaussian CAR

$$\ln\left(\frac{p_{0i}}{p_{2i}}\right) = \alpha_1 + \alpha_2 \cdot \frac{\text{DBH}_i}{100} + \varphi_1$$

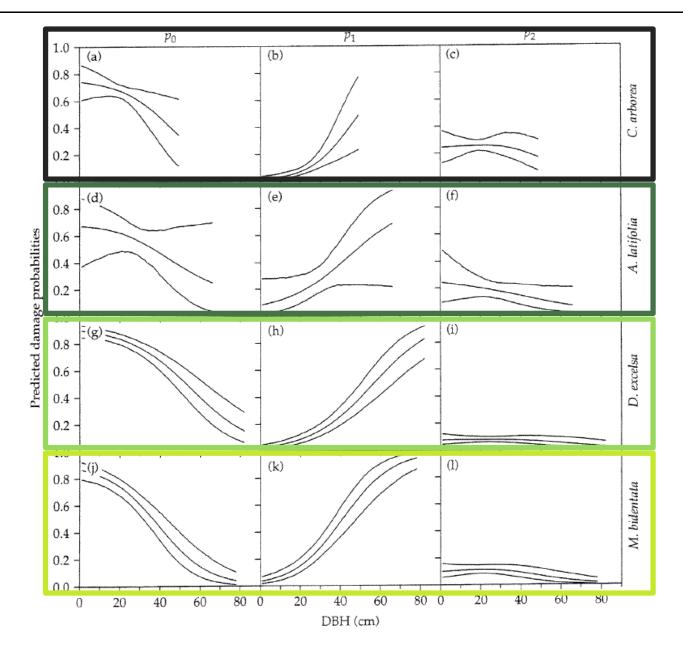
$$\ln\left(\frac{p_{1i}}{p_{2i}}\right) = \alpha_3 + \alpha_4 \cdot \frac{\text{DBH}_i}{100} + \varphi_2$$
¹⁷

Results: Model comparison – damage probability II

Parameter	Model 1	Model 2	Model 3
α_1	2.08	1.85	1.23
+/- 95% int.	1.45, 2.69	1.30, 2.48	0.87, 1.63
α ₂	-7.03	-5.7	-1.29
+/- 95% int.	-10.47, -3.54	-9.19, -2.31	-3.43, 0.69
α ₃	-2.09	-2.04	-3.07
+/- 95% int.	-2.87, -1.34	-2.70, -1.47	-3.83, -2.37
α_4	4.90	4.72	8.53
+/- 95% int.	1.38, 8.47	2.07, 7.82	5.52, 12.00
DIC	n.a.	10'391	9'807



Results: Model comparison – damage probability IV



Model 1:

Survival probability

$$\ln\left(\frac{p_s}{(1-p_s)}\right) = \beta_1 \cdot \frac{\text{DBH}_i}{100} + \beta_2 \cdot 100 \cdot \text{BA} + \beta_3 \cdot \text{D}(1) + \beta_4 \cdot \text{D}(2) + \beta_5 \cdot \text{D}(3)$$

Model 2:

Hierarchical analysis

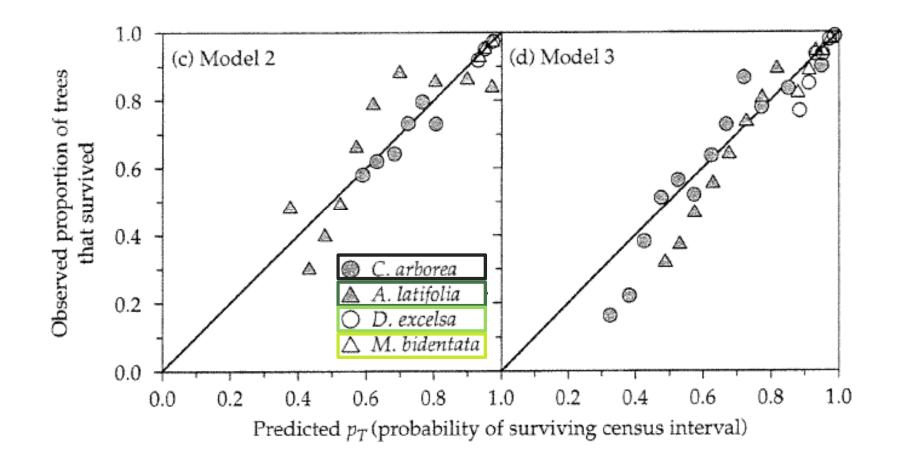
-> β_1 , β_2 , β_3 , β_4 , β_5 become tree specific

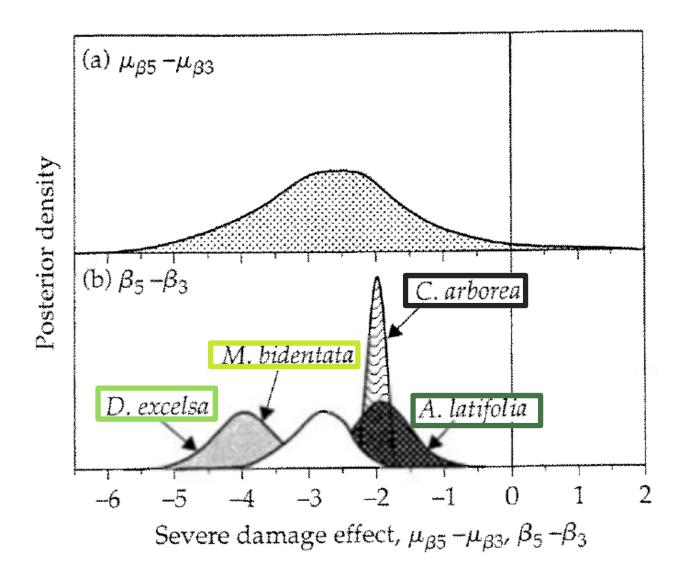
Model 3: Spatial correlation with Gaussian CAR

-> ϕ_1 , ϕ_2 (equal for all tree types)

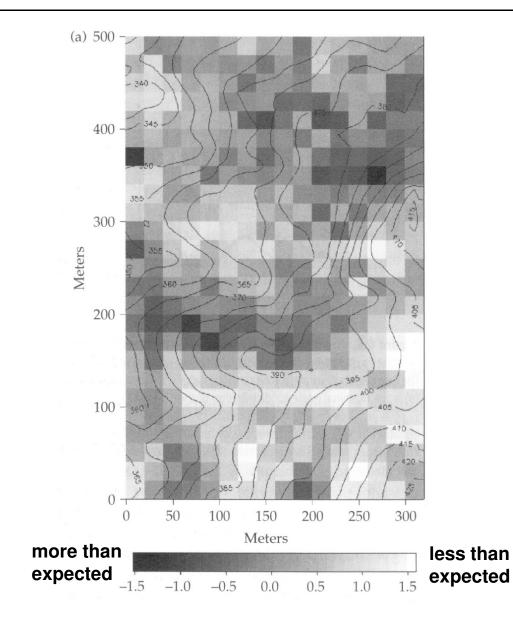
Results: Model comparison – survival probability II

Parameter	Model 1	Model 2	Model 3
$\beta_{1 (DBH)}$	3.76	3.45	2.47
+/- 95% int.	2.46, 5.01	2.51, 4.28	1.26, 3.71
$\beta_{2 \ (Crowding)}$	1.64	1.6	1.95
+/- 95% int.	0.92, 2.32	0.87, 2.32	1.19, 2.76
$\beta_{3 \ (no \ damage)}$	1.73	1.8	2.06
+/- 95% int.	1.44, 2.04	1.50, 2.12	1.74,2.40
eta_4 (partial damage)	1.16	1.26	1.36
+/- 95% int.	0.63, 1.709	0.72,1.81	0.83,1.93
$\beta_{4\ (heavy\ damage)}$	0.12	0.18	0.05
+/- 95% int.	-0.25, 0.470	-0.18, 0.52	-0.31, 0.40

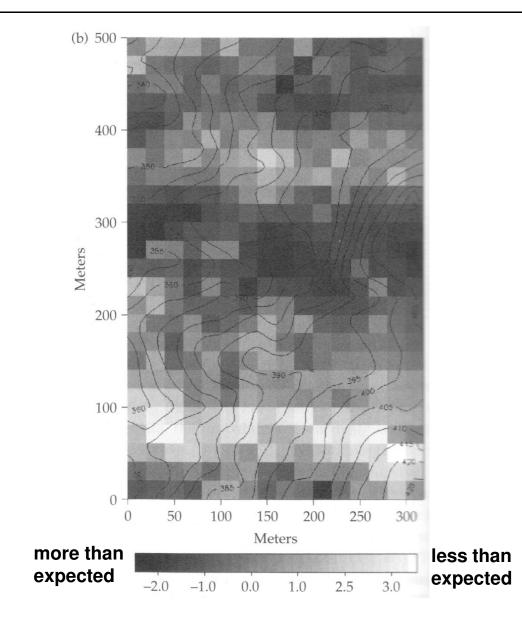




Results: Spatial correlation I – severe damage



Results: Spatial correlation II – moderate damage



Species-specific parameters

- Small diameter -> less damage
- D. excelsa / M. bidentata with less damage than C. arborea / A. Latifolia
- Damage has more impact on survival for slow growing species but
- Slow growing species are less likely to be damaged

Spatial pattern

- Reflects storm directions, topology and former land use
- No assertion concerning interaction effects possible

Inclusion of more species

Tree specific spatial correlation + Inclusion of land-use history and topology

➔ hurricane intensity monitor

Data from multiple hurricane

→ insights how storm regimes affect forest dynamics

Inclusion of interaction parameters