

Spatial Variability: Classical vs. Bayesian Kriging

Tobias Doppler

PhD Seminar

Bayesian Networks and Bayesian Hierarchical Analysis in Engineering 18. November 2009

Eawag: Swiss Federal Institute of Aquatic Science and Technology

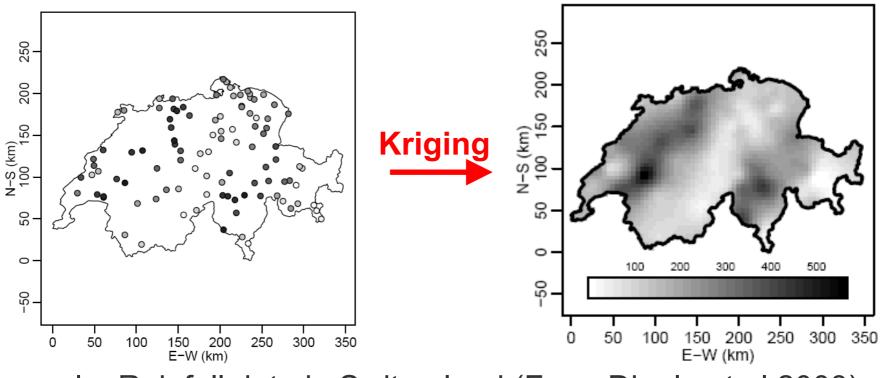
Content

- 1. What is kriging?
- 2. Very Short history of kriging
- 3. General introduction
- 4. Classical kriging
- 5. Bayesian kriging
- 6. Example Swiss rainfall data
- 7. Discussion

What is Kriging ?

Kriging is a group of geostatistical techniques to interpolate the value of a random field at an unobserved location from observations of its value at nearby locations.

(Wikipedia, Nov. 2009)



Example: Rainfall data in Switzerland (From Diggle et al 2003)

History

Daniel Gerhardus Krige: South African Mining Engineer (*1919)

Master Thesis 2 Papers 1951/52 Basis for Kriging

Georges François Paul Marie Matheron: French Mathematician and Geologist (1930 – 2000) Translated Kriges Papers Formalized the Approach

Who uses Kriging?

- Mining
- Hydrogeology
- Natural resources
- Environmental science
- Remote sensing
- Black box modelling in computer experiments

(Wikipedia Nov. 2009)

Typs of Kriging

Simple kriging assumes a known constant trend: $\mu(x) = 0$.

Ordinary kriging assumes an unknown constant trend: $\mu(x) = \mu$.

Universal kriging assumes a general linear trend model

IRFk-kriging assumes $\mu(x)$ to be an unknown polynomial in *x*.

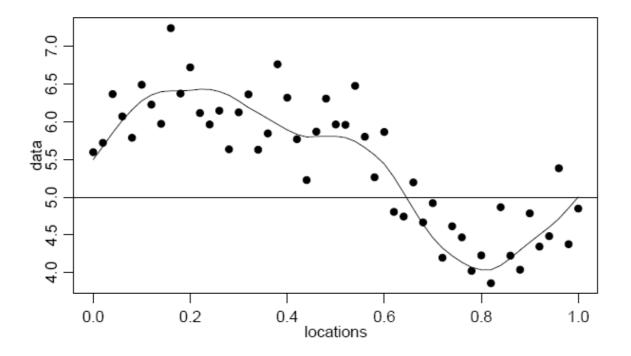
Indicator kriging uses indicator functions instead of the process itself, in order to estimate transition probabilities.

Disjunctive kriging is a nonlinear generalisation of kriging.

Lognormal kriging interpolates positive data by means of logarithms. (Wikipedia, November 2009)

Basic Assumptions & Notation

- Locations x=x₁,x₂,...,x_n with measurements y=y₁,y₂,...,y_n
- y is a realization of a random field Y (measurement process)
- There is an unobserved stochastic process S (signal process)

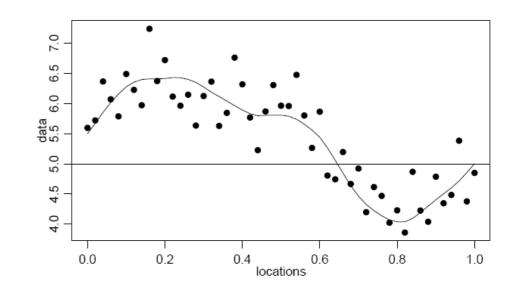


Gaussian Model

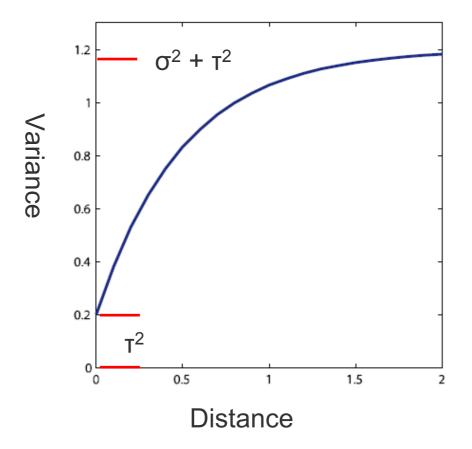
- S is a stationary gaussian process with:
 - $E(S(x)) = \mu, Var(S(x)) = \sigma^2$
 - Correlation function $\rho(u) = corr(S(x), S(x'))$ with u = |x-x'|
- Conditional distribution of Y_i given S is gaussian with
 - E(Y_i) = S(x_i), Var(Y_i) = τ^2
 - Y_i are mutually independent

 $Y_i = S(x_i) + Z_i : i=1,...,n$

 Z_1, \dots, Z_n are independent With $Z_i \sim N(0, \tau 2)$



Presentation of Katharina: Variograms



Correlation Functions

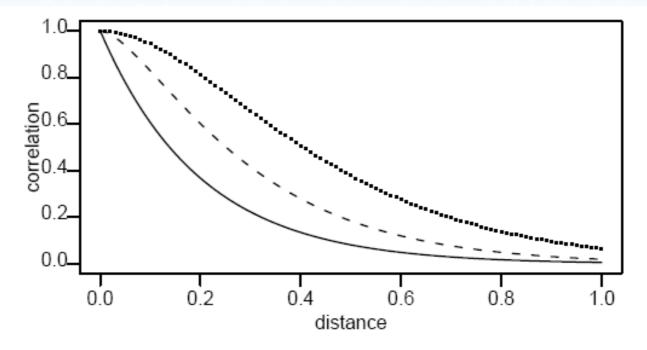


FIGURE 1.4. The Matérn correlation function with $\phi = 0.2$ and $\kappa = 1$ (solid line), $\kappa = 1.5$ (dashed line) and $\kappa = 2$ (dotted line).

$$\rho(u) = \{2^{\kappa-1}\Gamma(\kappa)\}^{-1}(u/\phi)^{\kappa}K_{\kappa}(u/\phi)$$

Gaussian Model

The distribution of Y is multivariate Gaussian

Y ~ N (μ **1**, σ^2 R + τ^2 I) R = correlation matrix I = identity matrix **1** = vector of 1

 $u_{i,j} = | x_i - x_j |$

Correlation Functions

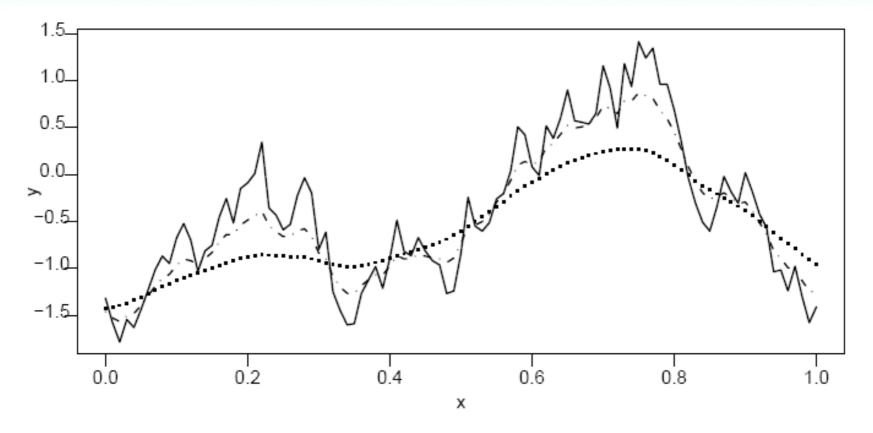


FIGURE 1.7. Simulations of Gaussian processes with Matérn correlation functions, using $\phi = 0.2$ and $\kappa = 0.5$ (solid line), $\kappa = 1$ (dashed line) or $\kappa = 2$ (dotted line).

Prediction under the Gaussian Model

Target of prediction $T = S(x_0)$

Gaussian Model => joint distribution of T and Y is multivariate normal Conditional distribution T | Y=y is gaussian with

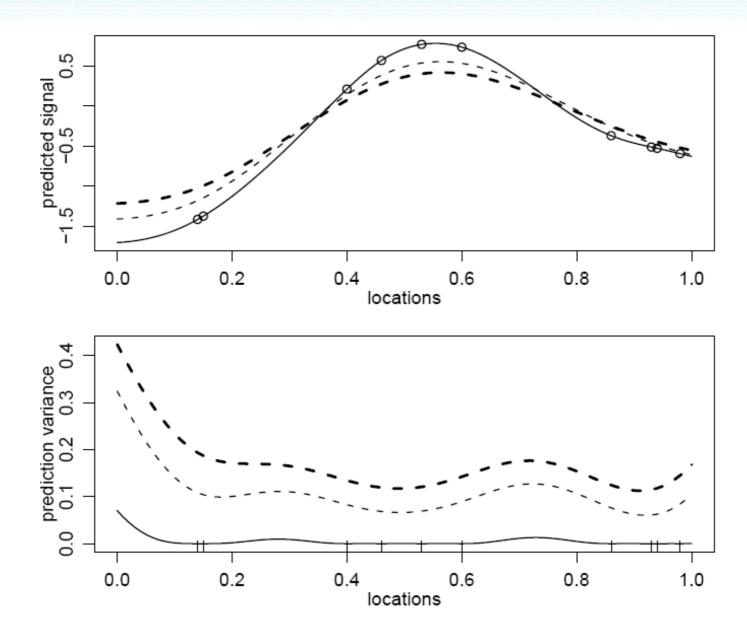
Mean =
$$\check{T}$$
 = μ + $\sigma^2 \mathbf{r}^T (\tau^2 \mathbf{I} + \sigma^2 \mathbf{R})^{-1} (\mathbf{y} - \mu \mathbf{1})$

Var (T | y) =
$$\sigma^2 - \sigma^2 \mathbf{r}^T (\tau^2 \mathbf{I} + \sigma^2 \mathbf{R})^{-1} \sigma^2 \mathbf{r}$$

r = correlation vector

=> Simple Kriging uses \check{T} as predictor at any location x_0

Prediction under the Gaussian Model



Prediction with GLSM

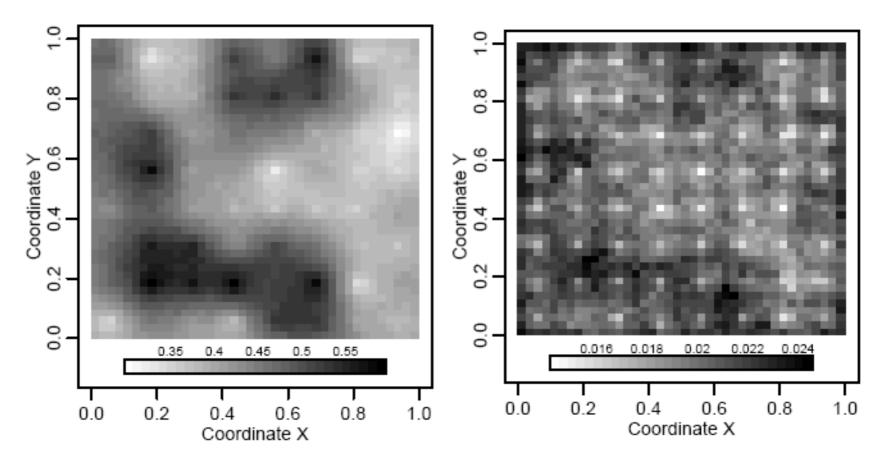


FIGURE 1.19. Left: predicted values at the grid points. Right: prediction variances.

Extensions of Gaussian Model

Anisotropy -> Coordinate transformation (rotation and streching)

Relationship between mean and variance -> Box-Cox Transformation of the data

$$\tilde{y}_i = h_{\lambda}(y_i) = \begin{cases} (y_i^{\lambda} - 1)/\lambda & \text{if } \lambda \neq 0\\ \log y_i & \text{if } \lambda = 0, \end{cases}$$

But models can get too complex:

Over-complex models together with small datasets lead to poor identifiability of model parameters

Plug-in prediction / bayesian inference

Standard approach in geostatistics: Plug-in predicion with **fitted parameters**

Suggestion of Diggle et al: Plug-in predicion with **maximum likelihood estimates** of the parameters

Or use **bayesian inference**

Likelihood Function

Describes the likelihood of a certain parameterset given a model and measured data

Log likelihood function for the gaussian model:

$$l(\beta, \tau^{2}, \sigma^{2}, \phi, \kappa) \propto -0.5 \{ \log |(\sigma^{2}R + \tau^{2}I)| + (y - F\beta)^{T} (\sigma^{2}R + \tau^{2}I)^{-1} (y - F\beta) \}$$

Bayesian inference

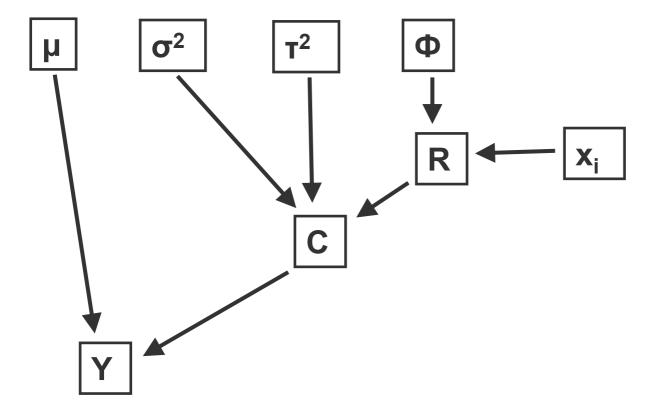
We need:

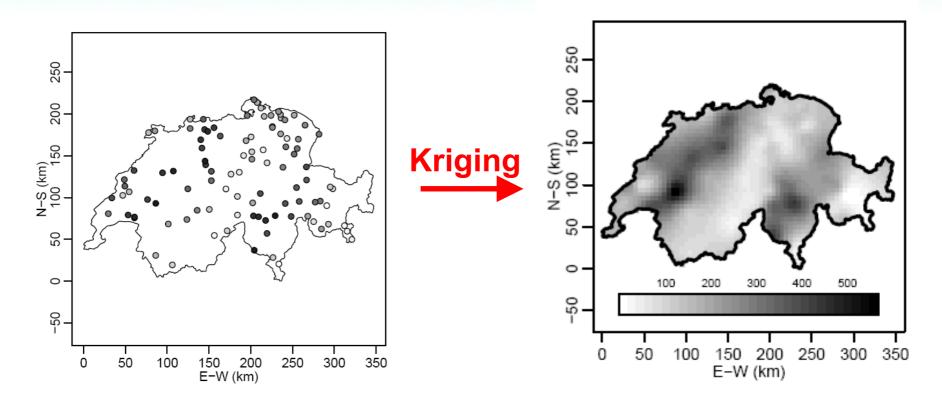
- Prior distribution of parameters
- Likelihood function

We get:

• Posterior distribution of the parameters

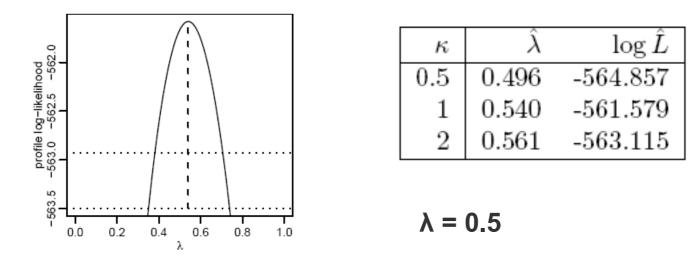
Bayesian Net





Transformed gaussian model (Box-Cox transformed data) with Mathérn correlation structure.

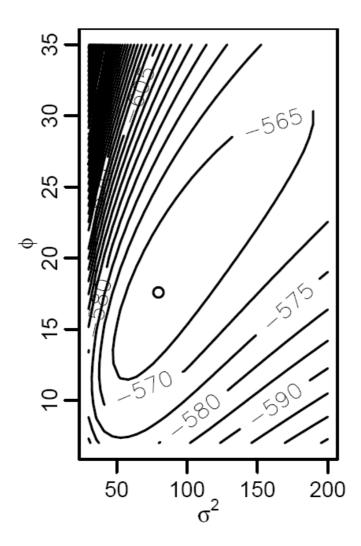
Estimates of λ (transformation parameter) and κ (one of the correlation parameters) by maximum likelihood estimation



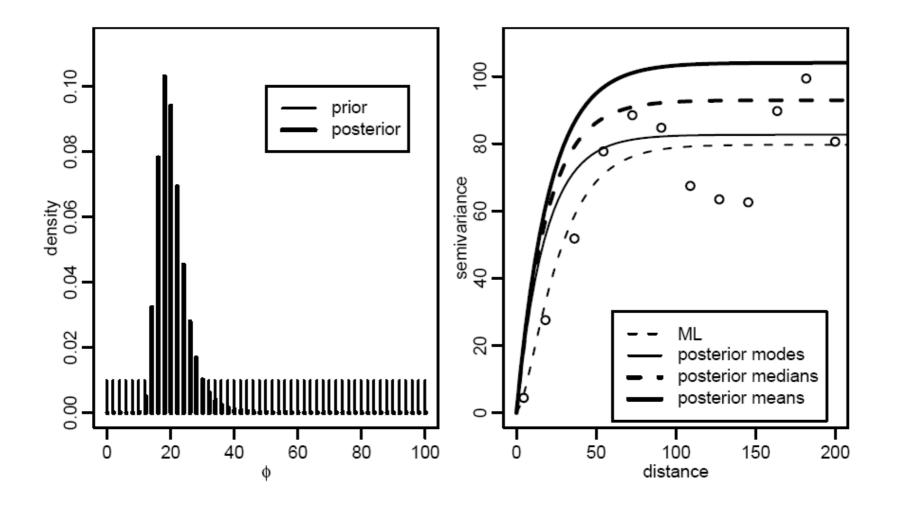
κ	$\hat{oldsymbol{eta}}$	$\hat{\sigma}^2$	$\hat{\phi}$	$\hat{\tau}^2$	$\log \hat{L}$
0.5	21.205	83.865	42.388	0	-564.858
1.0	22.426	79.694	17.583	0	-561.664
2.0	23.099	72.698	8.358	0	-563.292

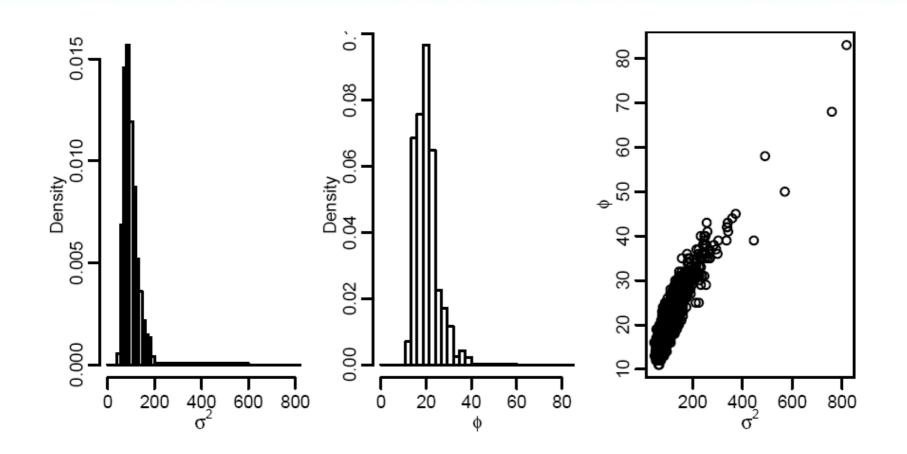
 $\kappa = 1, \tau^2 = 0$

Likelihood function with $\lambda = 0.5$, $\kappa = 1$, $\tau^2 = 0$



Uniform discrete prior for Φ , Scaled-Inverse- χ^2 distribution for μ and σ^2





Posterior distributions of Φ and σ^2

Software Implementation

All analysis shown were done in geoR and geoRgIm (add on's to R) => mostly analytical solutions

GeoBugs is an extension for WinBugs => uses numerical techniques to sample from the distributions

GeoBugs: Model and Priors

Model

model {

```
# Spatially structured multivariate normal likelihood
height[1:N] ~ spatial.exp(mu[], x[], y[], tau, phi, kappa)
# height[1:N] ~ spatial.disc(mu[], x[], y[], tau, alpha)
```

```
for(i in 1:N) {
mu[i] <- beta
}
```

```
# Priors
beta ~ dflat()
tau ~ dgamma(0.001, 0.001)
sigma2 <- 1/tau
```

priors for spatial.exp parameters

```
phi ~ dunif(0.05, 20)
```

prior range for correlation at min distance (0.2 x 50 ft) is 0.02 to 0.99 # prior range for correlation at max distance (8.3 x 50 ft) is 0 to 0.66

```
kappa ~ dunif(0.05,1.95)
```

priors for spatial.disc parameter

alpha ~ dunif(0.25, 48)

prior range for correlation at min distance (0.2 x 50 ft) is 0.07 to 0.96 # prior range for correlation at max distance (8.3 x 50 ft) is 0 to 0.63

exponential correlation function # disc correlation function

GeoBugs: Prediction

Spatial prediction

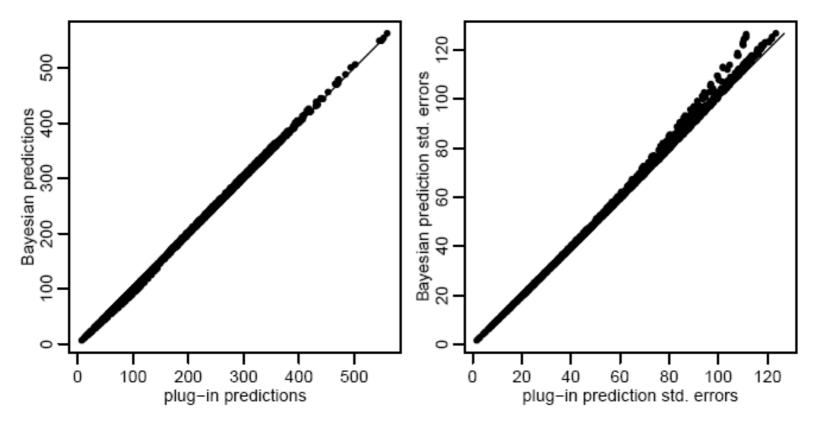
```
# Single site prediction
for(j in 1:M) {
    height.pred[j] ~ spatial.unipred(beta, x.pred[j], y.pred[j], height[])
}
```

Only use joint prediction for small subset of points, due to length of time it takes to run for(j in 1:10) { mu.pred[j] <- beta } height.pred.multi[1:10] ~ spatial.pred(mu.pred[], x.pred[1:10], y.pred[1:10], height[])

}

Bayesian vs plug-in: Differences and Similarities

- Often predicted values are similar
- Prediction Variances in bayesian predictions are often higher
- Differences are larger for non-linear targets (eg. Max value)
- Differences are lager for noisy data-sets



Advantages and Disadvantages of bayesian approach

- + Explicit handling of uncertainty
- + More honest assessment of prediction error
- Computationally more expensive
- Choice of prior can be important