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What is Kriging ?

Kriging is a group of geostatistical techniques to interpolate 
the value of a random field at an unobserved location from 
observations of its value at nearby locations.

(Wikipedia, Nov. 2009)

Example: Rainfall data in Switzerland (From Diggle et al 2003)

Kriging



History

Daniel Gerhardus Krige: South 
African Mining Engineer (*1919)

Master Thesis
2 Papers 1951/52
Basis for Kriging

Georges François Paul Marie 
Matheron: French 
Mathematician and 
Geologist (1930 – 2000)

Translated Kriges Papers
Formalized the Approach



Who uses Kriging?

• Mining

• Hydrogeology

• Natural resources

• Environmental science

• Remote sensing

• Black box modelling in computer experiments

(Wikipedia Nov. 2009)



Typs of Kriging

Simple kriging assumes a known constant trend: μ(x) = 0. 

Ordinary kriging assumes an unknown constant trend: μ(x) = μ. 

Universal kriging assumes a general linear trend model 

IRFk-kriging assumes μ(x) to be an unknown polynomial in x. 

Indicator kriging uses indicator functions instead of the process itself, in 
order to estimate transition probabilities. 

Disjunctive kriging is a nonlinear generalisation of kriging. 

Lognormal kriging interpolates positive data by means of logarithms.
(Wikipedia, November 2009)



Basic Assumptions & Notation

• Locations x=x1,x2,….,xn with measurements y=y1,y2,…,yn

• y is a realization of a random field Y (measurement process)

• There is an unobserved stochastic process S (signal process)



Gaussian Model

• S is a stationary gaussian process with:
– E(S(x)) = μ, Var(S(x)) = σ2

– Correlation function  ρ(u) = corr(S(x),S(x‘)) with u = |x-x‘|

• Conditional distribution of Yi given S is gaussian with 
– E(Yi) = S(xi), Var(Yi) = τ2

– Yi are mutually independent

Yi = S(xi) + Zi : i=1,…,n

Z1,…,Zn are independent
With Zi ~ N(0, τ2)



Presentation of Katharina: Variograms

Distance

V
ariance

τ2

σ2 + τ2



Correlation Functions



Gaussian Model

The distribution of Y is multivariate Gaussian

Y ~ N (μ1, σ2R + τ2I)
R = correlation matrix
I = identity matrix
1 = vector of 1

σ2ρ(u1,1)+τ2 σ2ρ(u1,2)+τ2 …

σ2ρ(u2,1)+τ2 σ2ρ(u2,2)+τ2 …
.
.
.

ui,j = | xi - xj |



Correlation Functions



Prediction under the Gaussian Model

Target of prediction T = S(x0)

Gaussian Model => joint distribution of T and Y is multivariate normal
Conditional distribution T | Y=y is gaussian with

Mean = Ť = μ + σ2rT (τ2I + σ2R)-1 (y – μ1)

Var (T | y) = σ2 - σ2rT (τ2I + σ2R)-1 σ2r

r = correlation vector

=> Simple Kriging uses Ť as predictor at any location x0



Prediction under the Gaussian Model



Prediction with GLSM



Extensions of Gaussian Model

Anisotropy -> Coordinate transformation (rotation and streching)

Relationship between mean and variance -> Box-Cox Transformation 
of the data

But models can get too complex:

Over-complex models together with small datasets lead to poor 
identifiability of model parameters



Plug-in prediction / bayesian inference

Standard approach in geostatistics: Plug-in predicion with fitted 
parameters

Suggestion of Diggle et al: Plug-in predicion with maximum likelihood 
estimates of the parameters

Or use bayesian inference



Likelihood Function

Describes the likelihood of a certain parameterset given a model and 
measured data

Log likelihood function for the gaussian model:



Bayesian inference

We need:
• Prior distribution of parameters
• Likelihood function

We get:
• Posterior distribution of the parameters
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Example: Swiss Rainfall Data

Kriging

Transformed gaussian model (Box-Cox transformed data) with Mathérn
correlation structure.



Example: Swiss Rainfall Data

Estimates of λ (transformation parameter) and κ (one of the correlation
parameters) by maximum likelihood estimation

λ = 0.5

κ = 1, τ2 = 0



Example: Swiss Rainfall Data

Likelihood function with λ = 0.5, κ = 1, τ2 = 0



Example: Swiss Rainfall Data

Uniform discrete prior for Ф, Scaled-Inverse-χ2 distribution for μ and σ2



Example: Swiss Rainfall Data

Posterior distributions of Ф and σ2



Software Implementation

All analysis shown were done in geoR and geoRglm (add on’s to R) => 
mostly analytical solutions

GeoBugs is an extension for WinBugs => uses numerical techniques to 
sample from the distributions



GeoBugs: Model and Priors



GeoBugs: Prediction



Bayesian vs plug-in: Differences and Similarities

• Often predicted values are similar
• Prediction Variances in bayesian predictions are often higher
• Differences are larger for non-linear targets (eg. Max value)
• Differences are lager for noisy data-sets



Advantages and Disadvantages of bayesian
approach
+ Explicit handling of uncertainty
+ More honest assessment of prediction error

– Computationally more expensive
– Choice of prior can be important
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