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6.7.     Contacts Conditions

• Difficult non linear behavior = contact 
between two or more bodies

• Contacts = From frictionless in small 
displacement  to friction in general strain

• Nonlinearity of the analysis is not only 
geometric and material but also contact 
conditions



Objective

• Briefly state the contact conditions in the 
context of finite element analysis and 
present a general approach for solution



6.7.1.  Continuum Mechanics Equations
We consider N bodies that are in contact at time t
Sc is the complete area of contact
tfiC : Components of contact tractions
tfiS : components of the known externally applied traction

Concept of virtual work for the N bodies at time t

Usual term Contribution of contact 
forces



We denote 2 body I and J
Each body is supported such that without contact no rigid motion is possible
tfIJ : vector of contact surface traction on body I due to contact with body J then tfIJ = - tfJI

The virtual work due to the contact traction can be written :



We call pair of surface SIJ and SJI

• SIJ : Contractor surface
• SJI : Target surface

Virtual work that the contact tractions produce
Over the virtual relative displacement
On the contact pair



Analyzes of the right-hand side

n : Unit outward normal to SIJ 

s :  Unit vector 
Decomposition of the contact traction tFIJ



x : generic point on SIJ 

y*(x,t) is the point on SJI satisfying

The distance from x to SJI is given by :

Where n* is the unit “normal vector” that we use at y*(x,t)
The function g is the gap function for the contact surface pair

The conditions for normal contact can be written as : 

Express the fact that if g >0 we must have
λ = 0



Frictional resistance
Magnitude of the relative tangential velocity corresponding to the unit tangential 
vector s at y*(x,t)

Tangential velocity at time t of the material point at y* relative to
The material point at x



Definitions Coulomb’s law of friction states :



• Previous example consider pseudo-staic contact 
condition

• In dynamic analysis:
Body forces mean Inertial force effect + kinematic 

interface conditions must be satisfied  at all 
instances of time required displacement, velocity 
and acceleration compatibility between the 
contacting bodies.

Various algorithms have been proposed to solve 
contact problems in Finite Element analysis. 



6.7.2.  A Solution Approach for Contact Problems : The 
Constraints Function Method

- w is a function of g and λ that satisfied
and
-
Then contact conditions are given by





Example on the formulation 
governing finite element equation

We consider two-dimensional case of contractor and target bodies:
Node k1 and k2 define straight boundary but not necessary corner node of an 

element



• Discretization of the continuum equations 
6.301 and 6.314 at time t+Δt gives :



• The nodal force vector is 





Conclusion 
• Continuum mechanics formulation in section 

6.7.1 has been given for very general conditions 
deformation and constitutive law.

• Formulation is applicable to frictionless contact

• 6.231 correspond to a full linearization.
If too large time step Convergence difficulties 

because predicted intermediate state are too far 
from the solution.



6.8.    Some practical considerations



6.8.1. The general Approach to 
Nonlinear Analysis

• Good practice in engineering analysis :
Nonlinear analysis always preceded by linear analysis so that the non 

linear analysis is an extension of the complete analysis beyond the 
assumptions of linear analysis.

… In addition to general recommendations, practical aspects can be 
important :



6.8.2. Collapse and Buckling 
Analyses



Illustration of response structure 
when collapse or buckling

Arch 
After A :Post buckling (deformation) behavior, iduce by load increase = dynamic response



The response of the column depend of β
When β is very small we are closed to a perfectly straigth column with only compressive
load.



We consider the calculation of the 
linearized buckling load

• t-ΔtK and tK stiffness matrix at time t-Δt and 
t

• t-ΔtR and tR Vectors of externally applied
load

We assume at any time 

λ : Scaling factor



At collapse or buckling, the stiffness matrix is singular and the condition to calculate
λ is

Ф is a non zero vector



We are only interested  in the only smallest positive eigenvalues, so;



The assumption used in the linearized
buckling analysis are displayed in 6.323 
and 6.324 

We assume that the elements in the stiffness matrix vary lineary from time t-Δt onward
The slope of the change are being given by the difference from time t-Δt to time t.
The linearized buckling analysis gives a reasonable estimate of the collapse load only
If the the precollapse displacement are relatively small





Analysis of arch

• Precollapse displacement are large.
• Linearized buckling analysis will give good 

result if the structure displays a column 
type of buckling behavior.



• Arch 
• Ten two-node 
isoparametric
beam element

Objectif:
Predict the collapse and 
postcollapse response 



• Response calculated using  a load-
displacement-constraint method 

• A linearized buckling analysis was performed using the state t-Δt the
unstressed configuration and state Δt  the configuration corresponding to a 
pressure of 10.



Calculate response using a load displacement method with this geometric imperfection.
Pressure collapse load predicted is significantly smaller than the previous
The reduction is the collapse load is associated with a nonsymmetric behavior of the 
Structural model



Conclusion

• Structural imperfection can have a major effect 
on the predicted load-carrying capacity of a 
structure.

• Imperfection should be introduced in the 
structural model.

• Dynamic solution need to be considered, a 
dynamic buckling or collapse analysis that 
complete dynamic incremental analyses be 
performed for given different load levels. 



6.8.3. The Effects of Elements Distortions

• In practice, element must largely be of a general straight-
sided  shapes with angular distortions in order to provide 

mesh grading and mesh complex geometries effectively.



• In geometric nonlinear analysis significant 
angular and curved edge distortions due to 
non corner node element may arise a s 
consequence of deformation

• Using large displacement formulations, the 
principle of virtual displacement is applied 
to each element corresponding to the 
current configuration instead of the initial 
configuration in linear analysis. 



6.8.4. The Effects of Order of 
Numerical Integration

• Nonlinear analysis : select appropriate numerical 
integration and order of integration.

• In geometric nonlinear analysis, at least the 
same integration order should be employed as 
linear analysis.

• An higher integration order than in the linear 
analysis may be required. This consideration is 
very important for beam, plate and shell.



Result using different order of Gauss integration for an eight-node plane stress 
representing the section of the beam.
Analyse illustrate that predict the nonlinear response accurately a higher Integration 
Order in the thickness direction beam is required than linear analysis. 



EXAMPLE 6.24







From table 4.2
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