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6.7. Contacts Conditions

* Difficult non linear behavior = contact
between two or more bodies

» Contacts = From frictionless in small
displacement to friction in general strain

* Nonlinearity of the analysis is not only
geometric and material but also contact
conditions



Objective

 Briefly state the contact conditions in the
context of finite element analysis and
present a general approach for solution



6.7.1. Continuum Mechanics Equations

We consider N bodies that are in contact at time t

S.is the complete area of contact

t.C . Components of contact tractions

.S - components of the known externally applied traction

Concept of virtual work for the N bodies at time t

N N N

> U "1y Brey d’V} =2 U du; ‘f7 d'V + J. dui 'fi d'S} + 2| suifsdls  (6.301)
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Figure 6.17 Bodies in contact at time ¢
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We denote 2 body | and J

Each body is supported such that without contact no rigid motion is possible

tfl - vector of contact surface traction on body | due to contact with body J then tflJ = - tJl
The virtual work due to the contact traction can be written :

f” bul "fI' ds” + L Sul 'fi dS" = I  Bul’ 'f’ s (6.302)
5 5 ki



We call pair of surface SY and S
« SV : Contractor surface
« SJ': Target surface

LH Sul 'fY ds” + Lﬂ dul 'fI" dS" = I  Sull Y ds" (6.302)

& J
Y

Virtual work that the contact tractions produce
Over the virtual relative displacement
On the contact pair



Analyzes of the right-hand side

Figure 6.18 Definitions used in contact analysis

n : Unit outward normal to SV
s . Unit vector
Decomposition of the contact traction tF"

‘7 = An + 18 (6.304



A= (Efﬂ )T“; [ = ("f‘” )Ts (6305]
X : generic point on SV

y*(x,t) is the point on SY! satisfying

Ix — y*(x, Dl = min {[|x -y} (6.306)

YES

The distance from x to SJ'is given by :

g(x, 1) = (x — y*)'m* (6.307)

Where n* is the unit “normal vector” that we use at y*(x,t)
The function g is the gap function for the contact surface pair

The conditions for normal contact can be written as :

g=0 A =0 gh =0 (6.308)

\ Express the fact that if g >0 we must have
A=0



Let us define the nondimensional variable 7 given by

T=— (6.309)

Frictional resistance

Magnitude of the relative tangential velocity corresponding to the unit tangential
vector s at y*(x,t)

i(x, 1) = (@/yony — Wleo) * §* (6.310)

fl(X, f)S* Tangential velocity at time t of the material point at y* relative to
The material point at x



Definitions Coulomb’s law of friction states :

7] =1
and | 7| < 1implies & = 0 (6.311)
while | 7| = 1 implies sign () = sign ()
A T
+1 e
-
g u
Normal conditions - -1

Tangential conditions

Figure 6.19 Interface conditions in contact analysis



* Previous example consider pseudo-staic contact
condition

* |In dynamic analysis:

Body forces mean Inertial force effect + kinematic
iInterface conditions must be satisfied at all
iInstances of time required displacement, velocity
and acceleration compatibility between the
contacting bodies.

Various algorithms have been proposed to solve
contact problems in Finite Element analysis.



6.7.2. A Solution Approach for Contact Problems : The
Constraints Function Method

- w is a function of g and A that satisfied ,,, , - o
and g=o; A =0 gh =0 (6.308)
- 7 and u such that the solutions of v(i, 7) = 0
Then contact conditions are given by
w(g, A) =0 (6.312)
v(, 7) =0 (6.313)

Multiplying (6.312) by A and (6.313) by 87 and integrating over $”, we obtain the
constraint equation

J:.-,u [6A w(g, A) + 87o(i, 7)]dSY =0 (6.314)



In summary, the governing equations to be solved for the two-body contact problem
in Fig. 6.17 are the usual principle of virtual work equation, with the effect of the contact
tractions included through externally applied (but unknown) forces, plus the constraint
equation (6.314). Of course, the principle of virtual work (6.301) is in the two-body contact
problem specialized to bodies I and J only, and the contact force term is given by (6.302)
and (6.303).

The finite element solution of the governing continuum mechanics equations is
obtained by using the discretization procedures for the principle of virtual work, and in
addition now discretizing the contact conditions also.



Example on the formulation
governing finite element equation

We consider two-dimensional case of contractor and target bodies:
Node k1 and k2 define straight boundary but not necessary corner node of an

element

Contactor

Node k

Figure 6.20 Two-dimensional case of contact



* Discretization of the continuum equations
6.301 and 6.314 at time t+At gives :

N

N N
2 {J‘ "7y Biey d'V} =2 {f ou; 'f7 d'V + J. dui 'f7 d‘S} + 2 | supfsd's  (6.300)
ty Iy Isf

L=1 L=1 L=1 Jis_
L” [6A w(g, A) + 810(, 7)]dSY =0 (6.314)
:+MF(:+£UU) — :+m‘R — HMR.;(HMU. :+m1,) (6315]
ﬂnd I+MF¢("+MU, f-|-4'.'i.r1.} — 0 (6316}

where with m contactor nodes,
i+ntTT = [‘al-'r Tis o« o s -'lk'r Ths ¢ 2 = s &ﬂh Trﬂ] (6-317]



Th;-: vector *+A'R, is obtained by assembling for all m contactor nodes, k = 1,...,m,

* The nodal force vector is

~A(mg + WSy
TARE = | (1 — BoAdm + pncsi) (6.318)
Bid(m + pmesi)]

The vector **4‘F, can be written as
H-MF‘T: = [r+ﬂuF.i~T “““ ’*“Fﬂ] (6319)

where +Aps = [W{gh 3&)]

o, T0) (6.320)



Section 6.3.1, the resulting equations corresponding to the linearization about the state at
time ¢ are

K + 'Ki) ‘Ki|[AU] _ ["*R - F - R.
R el R 622

where AU and A7 are the increments in the solution variables ‘U and ‘7, and ‘'K4., ‘K5, ‘'K5.,
and ‘K<, are contact stiffness matrices,

v _ IR, - _¥R.]

Ke oU’ Ko ot |

o IR e _TE. (6.322)
U’ T



Conclusion

 Continuum mechanics formulation in section
6.7.1 has been given for very general conditions
deformation and constitutive law.

« Formulation is applicable to frictionless contact

(6.321)

[(rx +'Ks) Ke] [ﬁU:l _ [fwu ~F - :n.,]
K  KelAs ~F,

« 6.231 correspond to a full linearization.

If too large time step > Convergence difficulties
because predicted intermediate state are too far
from the solution.



6.8. Some practical considerations

The establishment of an appropriate mathematical model for the analysis of an engineering
problem is to a large degree based on sufficient understanding of the problem under consid-
eration and a reasonable knowledge of the finite element procedures available for solution
(see Section 1.2). This observation is particularly applicable in nonlinear analysis because
the appropriate nonlinear kinematic formulations, material models, and solution strategies
need to be selected.

The objective in this section is to discuss briefly some important practical aspects
pertaining to the selection of appropriate models and solution methods for nonlinear anal-
ysis.



6.8.1. The general Approach to
Nonlinear Analysis

« Good practice in engineering analysis :

Nonlinear analysis always preceded by linear analysis so that the non

linear analysis is an extension of the complete analysis beyond the
assumptions of linear analysis.

The advantages of starting with a linear analysis after which judiciously selected
nonlinear analyses are performed are that, first, the effect of each nonlinearity introduced
can more easily be explained, second, confidence in the analysis results can be established
and, third, useful information is accumulated throughout the period of analysis.

... In addition to general recommendations, practical aspects can be
important :



6.8.2. Collapse and Buckling
Analyses



lllustration of response structure
when collapse or buckling
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(a) Rasponsa of a thin plate/shell

Arch
After A :Post buckling (deformation) behavior, iduce by load increase = dynamic response
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(b} Rasponse of a column

Figure 6.21 Instability and collapse analyses

The response of the column depend of 3
When 3 is very small we are closed to a perfectly straigth column with only compressive
load.



We consider the calculation of the
linearized buckling load
o FAK gnd K stiffness matrix at time t-At and
t

« MAR and 'R Vectors of externally applied
load

We assume at any time T

K = 74K + A(K — ""¥K) (6.323)

R =“"2R + AR — ""R) A : Scaling factor (6.324




At collapse or buckling, the stiffness matrix is singular and the condition to calculate
Ais

det 'K =0 (6.325)
or, equivalently (see Section 10.2),
K = 0 (6.326)

where ¢ is a nonzero vector, Substituting from (6.323) into (6.326), we obtain the eigen-
problem

MK = A(VYK - 'K)d (6.327)
® is a non zero vector
'K ="K + MK - "¥K) (6.323)
Kd = vy ¥Kb (6.328)
where e (6.329)



We are only interested in the only smallest positive eigenvalues, so;

Kb = v Kb (6.328)

where Y (6.329)

Having evaluated v,, we obtain A, from (6.329), and then the buckling (or collapse)
load is given by (6.324),

Rbu:kliug = "AMR 4 .-l“.[(‘rR = I_MR) (6330}




The assumption used in the linearized

buckling analysis are displayed in 6.323
and 6.324

K = 74K + A(K — ""¥K) (6.323)

R = "R + ACR — ""~R) (6.324

We assume that the elements in the stiffness matrix vary lineary from time t-At onward
The slope of the change are being given by the difference from time t-At to time t.

The linearized buckling analysis gives a reasonable estimate of the collapse load only
If the the precollapse displacement are relatively small



P;r of mathematical model (analytical solution} = 986.96

Lt=10 P, of finite elament model = 986.212 (for 'P = 1, 10, and 100)

= 10%
/EJ' 10

Y

ot

(a) Linearized buckling analysis of column; two Hermitian beam
elements discussed in K. J. Bathe and S.

model the column Loed }
25,000 = AR = 1000; TR = 25,600
Atp _ TR
20,000 = A=10,000; "A = 21,100
A'R = 14,000; TR = 16,800
15,000 Atp = 14,500: TR = 15,000
10,000 —
To three digits
5,000 |~ Reor= 14,504
0 1 | | L
0 0.5 1.0 1.5 2.0
Displacement
(b) Linearized buckling analysis of erch in Fig. E6.3; L= 10;
EA=2.1x 108

Figure 6.22 Linearized buckling analyses of two structures; in each case time 7-At corre-
sponds to time O (the unstressed state).



Analysis of arch

* Precollapse displacement are large.

* Linearized buckling analysis will give good
result if the structure displays a column
type of buckling behavior.



« Arch

 Ten two-node
ISsoparametric
beam element

Objectif:
Predict the collapse and
postcollapse response

\

m

Uniform pressure load ‘p

&,

20
\/:r: 2_!*}‘/

a?

AR=6485
2= 22.5‘
E=2.1x10°
v=0.23
h=b=10

Cross section:

=

b

in

(a) Arch considered; ten 2-node isoparametric beam
elements are used to model the complete structure



* Response calculated using a load-
displacement-constraint method

« Alinearized buckling analysis was performed using the state t-At the
unstressed configuration and state At the configuration corresponding to a
pressure of 10.

(a) Arch considered; ten 2-node isoparametric beam
elements are used to model the complete structure

predicted using
120 | buckling analysis
/\ ¥ Computed
u response,
about 60 ste
80 ps
40
Load level used
for linearized buckling
analysis A RS D SR
0 2.00 4,00 6.00 8.00
Displacement of center of arch

(b) Displacement response of perfectly symmetric
structure

Figure 6.23 Collapse analysis of arch



Pressure }
120 |~

40

l__lllllllh_

0.00 2.00 4.00 6.00 8.00
Displacement of center of arch

(d) Response of arch with antisymmaetric imperfection
Figure 6.23 (continued)

Calculate response using a load displacement method with this geometric imperfection.
Pressure collapse load predicted is significantly smaller than the previous

The reduction is the collapse load is associated with a nonsymmetric behavior of the
Structural model



Conclusion

« Structural imperfection can have a major effect
on the predicted load-carrying capacity of a
structure.

* |Imperfection should be introduced in the
structural model.

* Dynamic solution need to be considered, a
dynamic buckling or collapse analysis that
complete dynamic incremental analyses be
performed for given different load levels.



6.8.3. The Effects of Elements Distortions

 In practice, element must largely be of a general straight-
sided shapes with angular distortions in order to provide

mesh grading and mesh complex geometries effectively.

Y

Al
Pressure i
{3)
Duetop P pld
— pﬁ;
' s pmm ?
N\ .- Duetop
S o
Time Time

Figure 6.24 Dynamic buckling of arch; the structure shows a stable dynamic response due
to load levels p*"’ and p'® and a much larger response due to p**,



* In geometric nonlinear analysis significant
angular and curved edge distortions due to
non corner node element may arise a s
consequence of deformation

» Using large displacement formulations, the
principle of virtual displacement is applied
to each element corresponding to the
current configuration instead of the initial
configuration in linear analysis.



6.8.4. The Effects of Order of
Numerical Integration

* Nonlinear analysis : select appropriate numerical
integration and order of integration.

* |In geometric nonlinear analysis, at least the
same integration order should be employed as
linear analysis.

* An higher integration order than in the linear
analysis may be required. This consideration is
very important for beam, plate and shell.



My
20 -
2x2
1.5
Thickness = 0.1 cm Ix3 Gauss integration
P —————— D X 2
1.0‘ [ e I |
E =6 x 10% N/cm? —————dxd
Er=0.0
10 cm v=0.0 o5 - Beam theory
o,=6x102Nfem? My, ¢y are moment and rotation at
= 10P Necm first yield, respectively
| - 0.0 | ! | L I
10 cm 0 1 2 3 4 5 ¢
(a) Finite elerment model considered (b) Calculated response Py

Figure 6.25 Effect of integration order in elastic-plastic analysis of beam section

Result using different order of Gauss integration for an eight-node plane stress
representing the section of the beam.

Analyse illustrate that predict the nonlinear response accurately a higher Integration
Order in the thickness direction beam is required than linear analysis.



EXAMPLE 6.24



Plane strain "
E = 5000 2 .
V= u-au

2 Time 0 Time t

Y -
X1

o F

Figure E6.24 Four-node element subjected to motion

EXAMPLE 6.24: Consider the four-node element shown in Fig. E6.24. The displacements of
the element are given as a function of time.
Calculate the Cauchy stresses using the following two stress measures:

(i) Use the toral formulation of the second Piola-Kirchhoff stress and Green-Lagrange
strain tensors,

ESH = EI Cﬂr& II!]E.H {ﬂ}

(ii) Use the rate formulation of the Jaumann stress rate and the velocity strain tensors (see
L. E. Malvern [A]),

:'}U = ICI_H-: IDr.r (b}



(i) Use the rotal formulation of the second Piola-Kirchhoff stress and Green-Lagrange
strain tensors,

EI Sﬂ il] Cﬂr& 'l!l Ers {-ﬂ-}

Consider case (i). The deformation gradient is

1 2
x=[y 7l

Let the Green-Lagrange strain tensor components at time ¢ be given by
fe = 3(X"{X - 1)

and hence,



From table 4.2

. E(1 — v) v
Plane strain 1 0
Q+v(1 -2 1 —v

Plane strain
E = 5000
v=0230

Using Table 4.2 with the given values of E and v, we obtain as nonzero values Cii1y =
6731, Cxon = Chpz = 2885, Capn = 6731, Cioz = 1923,
Hence, using the total Lagrangian description, we have

§S1, = 5770¢%; §S22 = 13,4621% §S12 = 38461

S{j = Cﬂr& lﬁfrs

=
S



(ii) Use the rate formulation of the Jaumann stress rate and the velocity strain tensors (see
L. E. Malvern [A]),

:'}U = :Clju IDrs (b)

Next consider case (ii). The velocity strain tensor ‘I} is computed as given in (6.42). Hence,

o f0E 2] R e | 0 +1
L_[ﬂ n]’ & 1 u]‘ w [—1 n]

Now we use the same constitutive matrix C to obtain
| 0
"i'zz = 0
"7'12_ 31846

We note that the Jaumann stress rate is independent of time. However, the material also rotates
as expressed in ‘W and the time rates of the Cauchy stress components are given by

‘i 2 'na
" | = | —2'12
"i‘Iz 3846 + 'ng — 'T|]

These differential equations can be solved to obtain (again to two significant figures and hence

using G = m = 19040)
T 1900(1 = cos 21)
' | = | —1900(1 — cos 2¢) (d)
"Tia 1900 sin 2t

We note that the results given in (c) and (d) are quite different when 7 is larger than about (.1 and
that in each material description normal stresses are generated (that are zero when infinitesimally
small strains are assumed). Also, the oscillatory behavior of the Cauchy stresses in (d) with
period 7 is peculiar. '



EXAMPLE 6.27: Consider element 2 in Example 4.5 and assume that in an elastoplastic
analysis the stresses at time ¢ in the element are such that the tangent moduli of the material are
equal to E/100 for 0 =< x = 40 and equal to E for 40 < x = 80 as illustrated in Fig. E6.27.
Evaluate the tangent stiffness matrix ‘K using one-, two-, three-, and four-point Gauss integra-
tion and compare these results with the exact stiffness matrix. Consider only material nonlinear-

ities.

. E :
Plastic 100 Elastic (E)

Figure E6.27 Element 2 of Example 4.5
in elastic-plastic conditions




For the evaluation of the matrix 'K we use the information given in Example 4.5 and in
Table 5.6, Thus, we obtain the following results:
One-point integration:

*K=2><40[ ]—E—[——l—- 1](1+1)2=i.‘).1':1'005fs‘[ : _1}

100 80 &0 —1 1

&l El'-'

Two-point integration:

'K

I
x
B
e

1

B} |-

| I |

§ by
l ]

g _—

0

E’ ]
—
+
|

Sl

B

I
o
R
g
by

I
|
— [ ]



Three-point integration.

5 —gﬁ] E[ 1 1]( \/3)2
WK == ai ol laacatn S o Pane
K 940[ w1700l 780 sol\' T

5
+ = +1+ 2
9 . Bl} 3'}] e L5 M)

1 -
'K = u.uzmog[ﬁl :]

Four-point integration:

ri L1 ]
n=4 +0.8611 ... 0.3478 . ..
+0.3399 . .. 0.6521 .

S |
‘K=0.34?8..{40)[ T“]E[ . 80]{1 1—08611...)

L1100 80



The exact stiffness matrix is
1 40 2 &0 2

w-|ElEl g sl 1+ ) o+ [ 0+ ) o)

= [Flﬁ]mo[ g0 sojl), \!t3g) @¥* ] 100{1+3) &

1 3

_|"®m|g -1 1 ::-*2( 1_)

[ u—’ﬁ]g[ 80 ao]{sm 1+ 20

K = 0.039?35[_1 "1]

s

1 1

It is interesting to note that in this case the two-point integration yields more accurate
results than the three-point integration and that a good approximation to the exact stiffness
matrix is obtained using four-point integration.
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