# FEM2 : Finite element Method 2 

p. 538-548<br>Exercice 6.14

- Show that the second Piola-Kirchhof stress tensor is invariant under a rigid rotation of the material.
- Second Piola-Kirchhof stress tensor
 Cauchy stress tensor

Inverse Deformation tensor

2nd term
Piola-Kirchhof stress tensor

- If rigid body rotation is applied to material from time $t$ to time $t+\Delta t$, the deformation gradient change to


End Hence :
Inverse deformation
gradient at $\mathbf{t + \Delta t}: \quad{ }_{t+\Delta t}^{0} \mathbf{X}={ }_{t}^{0} \mathbf{X} \mathbf{R}^{T}$
: Inverse deformation gradient at t

At $t$ :

At $\boldsymbol{t} \boldsymbol{+} \boldsymbol{\Delta t}$ :

$$
\begin{equation*}
\leftrightarrows \quad \text { No density change } \tag{c}
\end{equation*}
$$

During the rigid body rotation, the stress component remain constant in the rotating coordinate system.

$$
\begin{equation*}
{ }^{t+\Delta t} \mathbf{T}=\mathbf{R}^{{ }^{t}} \mathbf{T} \mathbf{R}^{T} \tag{d}
\end{equation*}
$$

$$
\begin{aligned}
& { }_{t+}+{ }_{\mathrm{t}}^{0} \mathbf{X}={ }_{\mathrm{t}}^{0} \mathbf{X} \mathbf{R}^{T}
\end{aligned}
$$

Substituting from (d) into (c), we obtain

$$
{ }^{t+\Delta_{0}^{t}} \mathbf{S}=\frac{{ }^{0} \rho}{i_{\rho}}{ }_{0} \mathbf{X}^{T} \boldsymbol{T} \cdot{ }_{t}^{0} \mathbf{X}^{T}={ }_{0}^{\mathrm{t}} \mathbf{S}
$$

$$
\text { Mean: }{ }^{++\Delta t_{0} S}=t_{0} S
$$


second Piola-Kirchhof stress tensor is invariant under a rigid rotation of the material

FEM2 : Finite element Method 2

Exercice 6.15

A four element node is subject to a stress (initial stress)

$$
{ }^{0} \tau_{11}
$$

The element is rotated from time 0 to time $\Delta t$ as rigid body trough large angle $\theta$ and without stress change
So magnitude $\Delta^{\Delta r} \bar{\tau}_{11}={ }^{0} \boldsymbol{T}_{11}$


- Second Piola-Kirchhof tensor at time $0=$ Cauchy stress tensor , ,because element deformation are 0

$$
{ }_{{ }^{0} \mathbf{S}} \mathbf{S}=\left[\begin{array}{ll}
{ }^{0} \tau_{11} & 0  \tag{a}\\
0 & 0
\end{array}\right]
$$

- Component of the Cauchy stress tensor at time $\Delta t$ expressed in the coordinates axes ${ }^{0} X_{1},{ }^{0} X_{2}$

$$
\begin{gather*}
\text { Rotation tensor } \\
\Delta_{\boldsymbol{r}} \boldsymbol{\tau}=\left[\begin{array}{cr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\Delta_{t} \bar{\tau}_{11} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \quad \text { (b) }  \tag{b}\\
\uparrow \\
\text { S: } \\
\text { Second } \\
\text { Piola-Kirchhof stress tensor }
\end{gather*}
$$

- Relation between the Cauchy stress and the second Piola-Kirchhof stresses at time $\Delta t$ :


Cauchy stress
at time $\Delta t$

Second Piola-Kirchhof stress
at time $\Delta t$

In this case, there is no density change at time $\Delta t$

$$
{ }^{\Delta t} \rho /{ }^{0} \rho=1 .
$$

Deformation gradient evaluation

| Node | ${ }^{t+\Delta t} \mathbf{x}_{1}$ | ${ }^{t+\Delta t} x_{2}$ |
| :---: | :--- | :--- |
| 1 | ${ }^{\Delta t} x_{1}^{1}=2 \cos \theta-1-2 \sin \theta ;$ | ${ }^{\Delta t} x_{2}^{1}=2 \sin \theta-1+2 \cos \theta$ |
| 2 | ${ }^{\Delta t} x_{1}^{2}=-1-2 \sin \theta ;$ | ${ }^{\Delta t} x_{2}^{2}=2 \cos \theta-1$ |
| 3 | ${ }^{\Delta t} x_{1}^{3}=-1 ;$ | ${ }^{\Delta t} x_{2}^{3}=-1$ |
| 4 | ${ }^{\Delta} x_{1}^{4}=2 \cos \theta-1 ;$ | ${ }^{\Delta t} x_{2}^{4}=2 \sin \theta-1$ |



Configuration at time $=\Delta t$

$x_{1}$

Figure initial s

Example node 4

Position node 4 at
Time 0



Deformation tensor a time t :

$$
{ }^{\prime} x_{i}=\sum_{k=1}^{4} h_{k}^{\prime} x_{i}^{k}
$$

Gradient deformation tensor a time t: $\quad \frac{\partial^{t} x_{i}}{\partial^{0} x_{j}}=\sum_{k=1}^{4}\left(\frac{\partial h_{k}}{\partial^{0} x_{j}}\right)^{t} x_{i}^{k}$

$$
\begin{aligned}
h_{1}=\frac{1}{4}\left(1+{ }^{0} x_{1}\right)\left(1+{ }^{0} x_{2}\right) ; & h_{2}=\frac{1}{4}\left(1-{ }^{0} x_{1}\right)\left(1+{ }^{0} x_{2}\right) \\
h_{3}=\frac{1}{4}\left(1-{ }^{0} x_{1}\right)\left(1-{ }^{0} x_{2}\right) ; & h_{4}=\frac{1}{4}\left(1+{ }^{0} x_{1}\right)\left(1-{ }^{0} x_{2}\right) \\
\frac{\partial h_{1}}{\partial^{0} x_{1}}=\frac{1}{4}\left(1+{ }^{0} x_{2}\right) ; & \frac{\partial h_{2}}{\partial^{0} x_{1}}=-\frac{1}{4}\left(1+{ }^{0} x_{2}\right) \\
\frac{\partial h_{3}}{\partial^{0} x_{1}}=-\frac{1}{4}\left(1-{ }^{0} x_{2}\right) ; & \frac{\partial h_{4}}{\partial^{0} x_{1}}=\frac{1}{4}\left(1-{ }^{0} x_{2}\right) \\
\frac{\partial h_{1}}{\partial^{0} x_{2}}=\frac{1}{4}\left(1+{ }^{0} x_{1}\right) ; & \frac{\partial h_{2}}{\partial^{0} x_{2}}=\frac{1}{4}\left(1-{ }^{0} x_{1}\right) \\
\frac{\partial h_{3}}{\partial^{0} x_{2}}=-\frac{1}{4}\left(1-{ }^{0} x_{1}\right) ; & \frac{\partial h_{4}}{\partial^{0} x_{2}}=-\frac{1}{4}\left(1+{ }^{0} x_{1}\right)
\end{aligned}
$$

$$
\Delta t_{0} \mathrm{X}=\left(\begin{array}{ll}
\frac{\partial^{t} x_{1}}{\partial^{0} x_{1}} & \frac{\partial^{\prime} x_{1}}{\partial^{0} x_{2}} \\
\frac{\partial^{\prime} x_{2}}{\partial^{0} x_{1}} & \frac{\partial^{\prime} x_{2}}{\partial^{0} x_{2}}
\end{array}\right)
$$

$$
{ }_{0}^{\Delta r} \mathbf{X}=\frac{1}{4}\left[\begin{array}{l:l}
\left(1+{ }^{0} x_{2}\right)(2 \cos \theta-1-2 \sin \theta) & \left(1+{ }^{0} x_{1}\right)(2 \cos \theta-1-2 \sin \theta) \\
-\left(1+{ }^{0} x_{2}\right)(-1-2 \sin \theta) & +\left(1-{ }^{0} x_{1}\right)(-1-2 \sin \theta) \\
-\left(1-{ }^{0} x_{2}\right)(-1) & -\left(1-{ }^{0} x_{1}\right)(-1) \\
+\left(1-{ }^{0} x_{2}\right)(2 \cos \theta-1) & -\left(1+{ }^{0} x_{1}\right)(2 \cos \theta-1) \\
\hdashline\left(1+{ }^{0} x_{2}\right)(2 \sin \theta-1+2 \cos \theta) & \left(1+{ }^{0} x_{1}\right)(2 \sin \theta-1+2 \cos \theta) \\
-\left(1+{ }^{0} x_{2}\right)(2 \cos \theta-1) & +\left(1-{ }^{0} x_{1}\right)(2 \cos \theta-1) \\
-\left(1-{ }^{0} x_{2}\right)(-1) & -\left(1-{ }^{0} x_{1}\right)(-1) \\
+\left(1-{ }^{0} x_{2}\right)(2 \sin \theta-1) & -\left(1+{ }^{0} x_{1}\right)(2 \sin \theta-1)
\end{array}\right]
$$

## Example:

Hence,

$$
\begin{aligned}
\frac{\partial^{\prime} x_{1}}{\partial^{0} x_{1}} & =\frac{1}{4}\left[\left(1+{ }^{0} x_{2}\right)(2)-\left(1+{ }^{0} x_{2}\right)(-1)-\left(1-{ }^{0} x_{2}\right)(-1)+\left(1-{ }^{0} x_{2}\right)(1)\right] \\
& =\frac{1}{4}\left(5+{ }^{0} x_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial^{\prime} x_{1}}{\partial^{0} x_{2}}=\frac{1}{4}\left(1+{ }^{0} x_{1}\right) ; \quad \frac{\partial^{\prime} x_{2}}{\partial^{0} x_{1}}=\frac{1}{8}\left(1+{ }^{0} x_{2}\right) \\
& \frac{\partial^{\prime} x_{2}}{\partial^{0} x_{2}}=\frac{1}{8}\left(9+{ }^{0} x_{1}\right)
\end{aligned}
$$

so that the deformation gradient is

$$
\delta_{0} \mathbf{X}=\frac{1}{4}\left[\begin{array}{ll}
\left(5+{ }^{0} x_{2}\right) & \left(1+{ }^{0} x_{1}\right) \\
\frac{1}{2}\left(1+{ }^{0} x_{2}\right) & \frac{1}{2}\left(9+{ }^{0} x_{1}\right)
\end{array}\right]
$$

$$
{ }_{0}^{{ }_{0}} \mathbf{X} \mathbf{X}=\frac{1}{4}\left[\begin{array}{l:l}
\left(1+{ }^{0} x_{2}\right)(2 \cos \theta-1-2 \sin \theta) & \left(1+{ }^{0} x_{1}\right)(2 \cos \theta-1-2 \sin \theta) \\
-\left(1+{ }^{0} x_{2}\right)(-1-2 \sin \theta) & +\left(1-{ }^{0} x_{1}\right)(-1-2 \sin \theta) \\
-\left(1-{ }^{0} x_{2}\right)(-1) & -\left(1-{ }^{0} x_{1}\right)(-1) \\
+\left(1-x^{0} x_{2}\right)(2 \cos \theta-1) & \left(1+{ }_{0} x_{1}\right)(2 \cos \theta-1) \\
\hdashline\left(1+{ }^{0} x_{2}\right)(2 \sin \theta-1+2 \cos \theta) & \left(1+{ }^{0} x_{1}\right)(2 \sin \theta-1+2 \cos \theta) \\
-\left(1+{ }^{0} x_{2}\right)(2 \cos \theta-1) & +\left(1-{ }^{0} x_{1}\right)(2 \cos \theta-1) \\
-\left(1-{ }^{0} x_{2}\right)(-1) & -\left(1-{ }^{0} x_{1}\right)(-1) \\
+\left(1-{ }^{0} x_{2}\right)(2 \sin \theta-1) & -\left(1+{ }^{0} x_{1}\right)(2 \sin \theta-1)
\end{array}\right]
$$



Compute

$$
\Delta_{0} \mathbf{X}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta  \tag{d}\\
\sin \theta & \cos \theta
\end{array}\right]
$$

Substitutina

$$
\begin{align*}
& { }_{\boldsymbol{\Delta}}^{\Delta} \boldsymbol{\tau}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
{ }^{\Delta} \bar{\tau}_{11} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]  \tag{b}\\
& \text { and } \\
& { }_{0}^{\Delta_{0}} S=\left[\begin{array}{cc}
{ }^{\Delta_{1}} \bar{\tau}_{11} & 0 \\
0 & 0
\end{array}\right] \tag{d}
\end{align*}
$$

$$
\text { Because }^{\Delta r} \bar{\tau}_{11}={ }^{0} \boldsymbol{\tau}_{11}, \quad{ }_{0} \mathbf{S}=\left[\begin{array}{ll}
{ }^{0} \tau_{11} & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad{ }_{0}^{\Delta} \mathbf{S}=\left[\begin{array}{cc}
\Delta{ }^{\Delta} \bar{\tau}_{11} & 0 \\
0 & 0
\end{array}\right]
$$

Show that component of the second Piola-Kirchhoh stress tensor did not change During th erigid body relation. There is no change because in this case the Deformation gradient corresponds to a rotation matrix :


Transpose Rotation tensor


# 6.3 Displacement-Based isoparametric continuum finite elements p.538-548 

Chap. 6 Finite Element Analysis in Solid and Structural Mechanics

### 6.3 Introduction

- From previous section (Chap.5) :

Developed linearized principle of virtual displacements in continuum form. Only variable is displacement u.

If only nodal point displacement as degree of freedom, finite element matrix is a full linearization of the virtual displacement at time $t$.

The derivation will show that if other displacement degree of freedom like rotation or stress mixed, the linearization is more efficiently achieved by direct Taylor expansion.

### 6.3.1. Linearization of the principle of virtual work with respect to finite element variable

- Prininciple of virtual displacement In the total Lagrangian formulation'

$$
\begin{equation*}
\int_{0_{V}}{ }^{t+\Delta \Delta_{0} S_{i j}} \delta^{+\Delta!}\left(\Theta_{i j} d d^{0} V=t+\Delta \mathscr{R}\right. \tag{6.89}
\end{equation*}
$$

- We linearize the expression and assume ${ }^{t+\Delta \mathrm{t}} \mathscr{R}$ independent of the deformation

$$
\begin{equation*}
{ }^{t+\Delta_{0}^{t}} S_{i j} \delta^{t+\Delta_{0}} \epsilon_{i j} \doteq{ }_{0} S_{i j} \delta_{0}^{t} \epsilon_{i j}+\frac{\partial}{\partial^{t} a_{k}}\left({ }^{d} S_{i j} \delta_{0}^{t} \epsilon_{i j}\right) d a_{k} \tag{6.90}
\end{equation*}
$$

where $d a_{k}$ is a differential increment in ${ }^{t} a_{k}$. We note that

$$
\begin{equation*}
\delta_{o}^{t} \epsilon_{i j}=\frac{\partial_{0}^{t} \epsilon_{i j}}{\partial^{t} a_{l}} \delta a_{l} \tag{6.91}
\end{equation*}
$$

- The second term

$$
\begin{equation*}
\frac{\partial}{\partial^{t} a_{k}}\left({ }_{0}^{t} S_{i j} \delta \delta \epsilon_{i j}\right) d a_{k}={ }_{0} C_{i j r s} \frac{\partial_{0}^{t} \epsilon_{r s}}{\partial^{t} a_{k}} \frac{\partial_{0}^{t} \epsilon_{i j}}{\partial^{t} a_{l}} \delta a_{l} d a_{k}+{ }_{0}^{{ }_{0} S_{i j}} \frac{\partial^{2}{ }_{0}^{t} \epsilon_{i j}}{\partial^{t} a_{k} \partial^{t} a_{l}} \delta a_{l} d a_{k} \tag{6.92}
\end{equation*}
$$

- And next :
$\left\{\int_{0_{V}}{ }_{0} C_{i j r s} \frac{\partial_{0}^{t} \epsilon_{r s}}{\partial^{t} a_{k}} \frac{\partial_{0}^{t} \epsilon_{i j}}{\partial^{t} a_{l}} d^{0} V+\int_{0_{V}}{ }_{0} S_{i j} \frac{\partial^{2}{ }_{0}^{t} \epsilon_{i j}}{\partial^{t} a_{k} \partial^{t} a_{l}} d^{0} V\right\} d a_{k} \delta a_{l}={ }^{t+\Delta \iota} \mathscr{R}_{l}-\left(\int_{0_{V}}{ }_{0} S_{i j} \frac{\partial^{t} \epsilon_{i j}}{\partial^{t} a_{l}} d^{0} V\right) \delta a_{l}$
- For isoparametric displacement-based continuum elements with nodal displacement degrees of freedom, both expressions can be directly and easily be employed to obtain the same finite element equations. For rotational element (6.96) is more direct


### 6.3.2 General Matrix Equations of DisplacementBased Continuum Elements

- We consider in more detail the matrices of isoparametric continuum finite element with displacement degrees freedom only.
- Basic step in the derivation of the governing finite element equations are the same as those used in linear analysis.
- By invoking the linearized principle of virtual displacement for each of the nodal points displacement in turn the governing finite element equation are obtained.
- As in linear analysis we need to consider a single element of a specific type in the derivation because equation of equilibrium are an assemblage of elements directly constructed from using direct stiffness procedure.
- By substituting the element coordinate and displacement interpolation into the equation we did in linear analysis, we obtain for a single element or for an assemblage of elements :

In material-nonlinear-only analysis
static analysis:
Displacement vector
strail ${ }^{{ }^{\prime}} \mathbf{K U}={ }^{r+\Delta^{\prime} \mathbf{R}}-{ }^{{ }^{\prime} \mathbf{F}}$
dynamic analysis, implicit time integration: External forces

$$
\begin{equation*}
\mathbf{M}^{t+\Delta t} \ddot{\mathbf{U}}+{ }^{t} \mathbf{K} \mathbf{U}={ }^{t+\Delta t} \mathbf{R}-{ }^{t} \mathbf{F} \tag{6.98}
\end{equation*}
$$

dynamic analysis, explicit time integration:

$$
\begin{equation*}
\mathbf{M}^{t} \ddot{\mathbf{U}}={ }^{t} \mathbf{R}-{ }^{t} \mathbf{F} \tag{6.99}
\end{equation*}
$$

using the TL formulation:
static analysis:

$$
\begin{equation*}
\left(\delta \mathbf{K}_{L}+\delta^{\delta} \mathbf{K}_{N L}\right) \mathbf{U}={ }^{t+\Delta t} \mathbf{R}-{ }_{\delta} \mathbf{F} \tag{6.100}
\end{equation*}
$$

dynamic analysis, implicit time integration:

$$
\begin{equation*}
\mathbf{M}^{t+\Delta \dot{U}} \ddot{\mathbf{U}}+\left({ }_{6}^{t} \mathbf{K}_{L}+{ }_{0}^{{ }_{0}} \mathbf{K}_{N L}\right) \mathbf{U}={ }^{t+\Delta} \mathbf{R}-{ }_{\delta} \mathbf{F} \tag{6.101}
\end{equation*}
$$

dynamic analysis, explicit time integration:

$$
\begin{equation*}
\mathbf{M}^{\prime} \ddot{\mathbf{U}}={ }^{\prime} \mathbf{R}-{ }_{\delta} \mathbf{F} \tag{6.102}
\end{equation*}
$$

and using the UL formulation:
static analysis:

$$
\begin{equation*}
\left({ }_{f}^{t} \mathbf{K}_{L}+{ }_{i} \mathbf{K}_{N L}\right) \mathbf{U}={ }^{t+\Delta} \mathbf{R}-{ }_{t}^{\mathbf{t}} \mathbf{F} \tag{6.103}
\end{equation*}
$$

dynamic analysis, implicit time integration:

$$
\begin{equation*}
\mathbf{M}^{t+\Delta t} \ddot{\mathbf{U}}+\left(!\mathbf{K}_{L}+\left\{\mathbf{K}_{N L}\right) \mathbf{U}={ }^{t+\Delta t} \mathbf{R}-\mathbf{F}\right. \tag{6.104}
\end{equation*}
$$

dynamic analysis, explicit time integration:

$$
\begin{equation*}
\mathbf{M}^{\prime} \ddot{\mathbf{U}}={ }^{\prime} \mathbf{R}-\boldsymbol{F} \tag{6.105}
\end{equation*}
$$

where $\mathbf{M}=$ time-independent mass matrix
${ }^{\mathbf{\prime}} \mathbf{K}=$ linear strain incremental stiffness matrix, not including the initial displacement effect
${ }_{6} \mathbf{K}_{L},{ }_{i} \mathbf{K}_{L}=$ linear strain incremental stiffness matrices
${ }_{6} \mathbf{K}_{N L},{ }_{t} \mathbf{K}_{N L}=$ nonlinear strain (geometric or initial stress) incremental stiffness matrices
${ }^{t+\Delta t} \mathbf{R}=$ vector of externally applied nodal point loads at time $t+\Delta t$; this vector is also used at time $t$ in explicit time integration
$\mathbf{F},{ }_{0}^{t} \mathbf{F},{ }_{i} \mathbf{F}=$ vectors of nodal point forces equivalent to the element stresses at time $t$
$\mathbf{U}=$ vector of increments in the nodal point displacements
${ }^{\prime} \ddot{\mathbf{U}},{ }^{t+\Delta t} \ddot{\mathbf{U}}=$ vectors of nodal point accelerations at times $t$ and $t+\Delta t$

TABLE 6.4 Finite element matrices

| Analysis type | Integral | Matrix evaluation |
| :---: | :---: | :---: |
| In all analyses | $\begin{aligned} & \int_{0_{V}} \rho^{0} \rho^{r+\Delta t} \ddot{u}_{i} \delta u_{i} d^{0} V \\ & { }^{r+\Delta n g}= \\ & \quad \int_{0_{S_{s}}}{ }^{r+\Delta t} f_{i}^{s} \delta u_{i}^{s} d^{0} S \\ & \\ & \quad+\int_{0_{V}}{ }^{r+\Delta t} f_{i}^{B} \delta u_{i} d{ }^{0} V \end{aligned}$ | $\begin{aligned} \mathbf{M}^{t+\Delta r \hat{u}}= & \left(\int_{0 v}{ }^{0} \rho \mathbf{H}^{T} \mathbf{H} d^{0} V\right)^{t+\Delta \Delta_{\mathbf{u}}} \\ { }^{t+\Delta t} \mathbf{R}= & \int_{0_{S_{f}}} \mathbf{H}^{s^{T} t+\Delta_{0} f^{s}} d^{0} S \\ & +\int_{0_{V}} \mathbf{H}^{T t+\Delta_{\delta} f^{B}} d^{0} V \end{aligned}$ |
| Materially-nonlinearonly | $\begin{aligned} & \int_{V} C_{i r,} e_{r g} \delta e_{i j} d V \\ & \int_{V}^{\prime} \sigma_{V} \delta e_{i j} d V \end{aligned}$ | $\begin{aligned} & ' \mathbf{K} \hat{\mathbf{u}}=\left(\int_{V} \mathbf{B}_{Z} \mathbf{C B}_{L} d V\right) \hat{\mathbf{u}} \\ & { }^{\prime} \mathbf{F}=\int_{V} \mathbf{B}_{L}^{\prime} \cdot \hat{\mathbf{\Sigma}} d V \end{aligned}$ |
| Total Lagrangian formulation | $\begin{aligned} & \int_{0_{v}}{ }_{0} C_{i j r s} e_{r s} \delta_{0} e_{i j} d^{0} V \\ & \int_{0_{V}} \delta S_{i j} \delta_{0} \eta_{i j} d^{0} V \\ & \int_{0_{v}} \delta S_{i j} \delta_{0} e_{i j} d^{0} V \end{aligned}$ |  |
| Updated Lagrangian formulation | $\begin{aligned} & \int_{v_{v}}{ }_{l j p r t} e_{n} \delta_{l} e_{i j} d^{t} V \\ & \int_{t_{V}}^{t} \tau_{i j} \delta_{t} \eta_{i v} d^{t} V \\ & \int_{t_{V}}{ }^{t} \tau_{i j} \delta_{r} e_{i j} d^{t} V \end{aligned}$ |  |

### 6.3.3. Truss and Cable Element

- Truss element : structural element capable of transmitting stresses only in the direction normal to the cross-sectional area
- We consider a truss element that has arbitrary orientation in space
- Element described by two to four nodes as Fig.6.3. It subjected to large displacements an large strains.
- Global coordinates of a nodal points

At time $0:{ }^{0} X_{1}{ }^{k},{ }^{0} X_{2}{ }^{k},{ }^{0} X_{3}{ }^{k},{ }^{0} X_{4}{ }^{k}$
At time $t:{ }^{t} x_{1}{ }^{k},{ }^{t} X_{2}{ }^{k, t}{ }^{k}{ }_{3}{ }^{k, t} X_{4}{ }^{k}$
Where $\mathrm{k}=1 \ldots \mathrm{~N}$ with $\mathrm{N}=$ nodes numbers $(2 \leq \mathrm{N} \leq 4)$


Figure 6.3 Two- to four-node truss element

The nodal point coordinate assume to determinate the spatial configuration of the truss a time 0 and $t$ using :

$$
\begin{array}{lll}
{ }^{0} x_{1}(r)=\sum_{k=1}^{N} h_{k}{ }^{0} x_{1}^{k} ; & { }^{0} x_{2}(r)=\sum_{k=1}^{N} h_{k}{ }^{0} x_{2}^{k} ; & { }^{0} x_{3}(r)=\sum_{k=1}^{N} h_{k}{ }^{0} x_{3}^{k} \\
{ }^{\prime} x_{1}(r)=\sum_{k=1}^{N} h_{k}{ }^{\prime} x_{1}^{k} ; & { }^{\prime} x_{2}(r)=\sum_{k=1}^{N} h_{k}{ }^{\prime} x_{2}^{k} ; & { }^{\prime} x_{3}(r)=\sum_{k=1}^{N} h_{k}{ }^{\prime} x_{3}^{k} \tag{6.107}
\end{array}
$$

Where the Interpolation functions $h_{k}(\mathbf{r})$ are defined

$$
\begin{gather*}
' u_{i}(r)=\sum_{k=1}^{N} h_{k}^{\prime} u_{i}^{k}  \tag{6.108}\\
u_{( }(r)=\sum_{k=1}^{N} h_{k} u_{l}^{k}, \quad i=1,2,3 \tag{6.109}
\end{gather*}
$$

- Since for truss element the only stress is the normal stress on its cross-sectional area, we consider the corresponding longitudinal strain. We have the TL formulation :

$$
\begin{equation*}
{ }_{6} \tilde{\epsilon}_{11}=\frac{d^{0} x_{i}}{d^{0} s} \frac{d^{\prime} u_{i}}{d^{0} s}+\frac{1}{2} \frac{d^{t} u_{i}}{d^{0} s} \frac{d^{t} u_{i}}{d^{0} s} \tag{6.110}
\end{equation*}
$$

- Where ${ }^{0} s(r)$ is the arc length at time 0 of the material point ${ }^{0} X_{1}(r),{ }^{0} x_{2}(r),{ }^{0} x_{3}(r)$ given by :

$$
\begin{equation*}
{ }^{0} s(r)=\sum_{k=1}^{N} h_{k}{ }^{0} s_{k} \tag{6.111}
\end{equation*}
$$



Figure 6.3 Two- to four-node truss element

The increment in the strain component ${ }_{0}{ }^{\mathrm{t}}{ }_{11}$ is denoted ${ }_{0} \tilde{\epsilon}_{11}$

$$
{ }_{0} \tilde{\epsilon}_{11}={ }_{0} \tilde{e}_{11}+{ }_{0} \tilde{\eta}_{11}
$$

$$
\begin{align*}
\text { Strains: } \quad{ }_{o} \tilde{e}_{11} & =\frac{d^{0} x_{i}}{d^{0} s} \frac{d u_{i}}{d^{0} s}+\frac{d^{\top} u_{i}}{d^{0} s} \frac{d u_{i}}{d^{0} s}  \tag{6.112}\\
{ }_{0} \tilde{\eta}_{11} & =\frac{1}{2} \frac{d u_{1}}{d^{0} s} \frac{d u_{i}}{d^{0} s} \tag{6.113}
\end{align*}
$$

For the strain-displacement matrices we define

$$
\begin{align*}
{ }^{0} \hat{\mathbf{x}}^{T} & =\left[\begin{array}{lllllll}
{ }^{0} x_{1} & { }^{0} x_{2}^{1} & { }^{0} x_{3}^{1} & \ldots & { }^{0} x_{1}^{N} & { }^{0} x_{2}^{N} & { }^{0} x_{3}^{N}
\end{array}\right]  \tag{6.114}\\
{ }^{\prime} \hat{\mathbf{u}}^{T} & =\left[\begin{array}{lllllll}
{ }^{1} u_{1}^{1} & { }^{t} u_{2}^{1} & { }^{t} u_{3}^{\prime} & \cdots & { }^{'} u_{1}^{N} & { }^{t} u_{2}^{N} & { }^{t} u_{3}^{N}
\end{array}\right] \\
\hat{\mathbf{u}}^{T} & =\left[\begin{array}{lllllll}
u_{1}^{1} & u_{2}^{1} & u_{3}^{\prime} & \cdots & u_{1}^{N} & u_{2}^{N} & u_{3}^{N}
\end{array}\right] \tag{6.115}
\end{align*}
$$

And hence

$$
\begin{gather*}
{ }_{0}^{t} \mathbf{B}_{L}=\left({ }^{0} J^{-1}\right)^{2}\left({ }^{0} \hat{\mathbf{x}}^{T} \mathbf{H}_{, r}^{T} \mathbf{H}_{r}+{ }^{\prime} \hat{\mathbf{u}}^{T} \mathbf{H}_{, r}^{T} \mathbf{H}_{r}\right)  \tag{6.117}\\
{ }_{0}^{t} \mathbf{B}_{N L}={ }^{0} J^{-1} \mathbf{H}_{r} \tag{6.118}
\end{gather*}
$$

With $\mathrm{J}^{-1}=\mathrm{dr} / \mathrm{d}^{0} \mathrm{~s}$
With $J^{-1}=d r / d^{0} s$
The only nonzero component is ${ }_{\delta} \tilde{S}_{11}$, which we assume to be given as a function of Green-Lagrange strain ${ }_{0} \tilde{\epsilon}_{11}$ at time $t$. The tangent stress-strain relationship Is therefore.

Incremental stress-strain material property matrix :


The above relation can be employed to develop the UL formulation and the Materially-nonlinear formulation.

## Ex 6.16

- For the 2 nodes element :

Develop the tangent stiffness matrix and force vector at time $t$. Consider large displacement and large strain conditions.

(a) Two-node element


Figure E6.16 Formulation of two-node truss element

Using TL formulation we express ${ }_{0} \mathrm{e}_{11}$ and ${ }_{0} \eta_{11}$. The truss element Undergoes displacement only in the ${ }^{0} \mathrm{x}_{1},{ }^{0} \mathrm{x}_{2}$ plane

$$
\begin{aligned}
& { }_{0} e_{11}=\frac{\partial u_{1}}{\partial^{0} x_{1}}+\frac{\partial^{t} u_{1}}{\partial^{0} x_{1}} \frac{\partial u_{1}}{\partial^{0} x_{1}}+\frac{\partial^{t} u_{2}}{\partial^{0} x_{1}} \frac{\partial u_{2}}{\partial^{0} x_{1}} \\
& { }_{o} \eta_{11}=\frac{1}{2}\left[\left(\frac{\partial u_{1}}{\partial^{0} x_{1}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial^{0} x_{1}}\right)^{2}\right]
\end{aligned}
$$

By geometry and using ${ }^{t} u_{i}=\Sigma_{k=1}^{2} h_{k}{ }^{\prime} u_{i}^{k}$
We compute
${ }^{\prime} u_{1}=0,{ }^{t} u_{2}^{\prime}=0,{ }^{\prime} u_{1}^{2}=\left({ }^{0} L+\Delta L\right) \cos \theta-{ }^{0} L,{ }^{\prime} u_{2}^{2}=\left({ }^{0} L+\Delta L\right) \sin \theta$,
And obtain

$$
\frac{\partial^{\prime} u_{1}}{\partial^{0} x_{1}}=\frac{\left({ }^{0} L+\Delta L\right) \cos \theta}{{ }^{0} L}-1 ; \quad \frac{\partial^{\prime} u_{2}}{\partial^{0} x_{1}}=\frac{\left({ }^{0} L+\Delta L\right) \sin \theta}{{ }^{0} L}
$$

- We replace the result into

$$
{ }_{o} e_{j j}=\frac{1}{2}(0 u_{k, j}+{ }_{o} u_{j, t}+\underbrace{\left.\delta u_{k, t} u_{k, j}+{ }_{o} u_{k, t} \delta u_{k, j}\right) ;}_{\text {Initial displacement effect }} \quad{ }^{2} \eta_{j}=\frac{1}{2} \mathrm{o} \mu_{k, i} \mathrm{o} u_{k, j}
$$

$$
{ }_{0} e_{11}=\frac{\partial u_{1}}{\partial^{0} x_{1}}+\frac{\partial^{t} u_{1}}{\partial^{0} x_{1}} \frac{\partial u_{1}}{\partial^{0} x_{1}}+\frac{\partial^{t} u_{2}}{\partial^{0} x_{1}} \frac{\partial u_{2}}{\partial^{0} x_{1}}
$$

$$
{ }_{0} e_{11}=\frac{1}{{ }^{0} L}\left\{\left[\begin{array}{llll}
-1 & 0 & 1 & 0
\end{array}\right]+\left(\frac{{ }^{0} L+\Delta L}{{ }^{0} L} \cos \theta-1\right)\left[\begin{array}{llll}
-1 & 0 & 1 & 0
\end{array}\right]\right.
$$

$$
\left.+\left(\frac{{ }^{\circ} L+\Delta L}{{ }^{0} L} \sin \theta\right)\left[\begin{array}{llll}
0 & -1 & 0 & 1
\end{array}\right]\right\}\left[\begin{array}{l}
u_{1} \\
u_{2}^{1} \\
u_{1}^{2} \\
u_{2}^{2}
\end{array}\right]
$$

$$
=\frac{{ }^{0} L+\Delta L}{\left({ }^{0} L\right)^{2}}\left[\begin{array}{llll}
-\cos \theta & -\sin \theta & \cos \theta & \sin \theta
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}^{1} \\
u_{1}^{2} \\
u_{2}^{2}
\end{array}\right]
$$

- And hence

$$
{ }_{0}^{t} \mathbf{B}_{L}=\frac{{ }^{0} L+\Delta L}{\left({ }^{0} L\right)^{2}}\left[\begin{array}{llll}
-\cos \theta & -\sin \theta & \cos \theta & \sin \theta
\end{array}\right]
$$

- In the total Lagrangian formulation we assume that ${ }_{0}{ }^{\mathrm{t}} \mathrm{S}_{11}$ is given in term of ${ }_{0}{ }^{\mathrm{t}} \varepsilon_{11}$

$$
{ }_{0} C_{1111}=\frac{\partial_{0}^{t} S_{11}}{\partial_{0}^{t} \epsilon_{11}}
$$

If we use ${ }_{0} S_{11}=E{ }_{0} \varepsilon_{11}$, we have ${ }_{0} C_{1111}=E$

- The tangent matrix and force vector are

Linear strain stiffness matrix

$$
{ }_{0} \mathbf{K}={ }_{0} C_{1111} \frac{\left({ }^{0} L+\Delta L\right)^{2}}{\left({ }^{0} L\right)^{3}}{ }^{0} A\left[\begin{array}{cccc}
\cos ^{2} \theta & \cos \theta \sin \theta & -\cos ^{2} \theta & -\cos \theta \sin \theta \\
& \sin ^{2} \theta & -\sin \theta \cos \theta & -\sin ^{2} \theta \\
& \cos ^{2} \theta & \sin \theta \cos \theta \\
\text { Symmetric } & & \sin ^{2} \theta
\end{array}\right]
$$

$$
\text { fness matrix } \quad+\frac{t P}{{ }^{0} L+\Delta \boldsymbol{L}}\left[\begin{array}{rrrr}
1 & 0 & -1 & 0  \tag{a}\\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

$$
{ }_{0}^{t} \mathbf{F}={ }^{\prime} P\left[\begin{array}{c}
-\cos \theta \\
-\sin \theta \\
\cos \theta \\
\sin \theta
\end{array}\right]
$$

Non linear strain
Stiffness matrix,independent from $\theta$

- Where ${ }^{t P}$ is the current force carried in the truss element. Here we have used, with the Cauchy stress equal to ${ }^{\text {tP/A }}$

$$
\begin{align*}
& { }_{6} S_{11}=\frac{{ }^{0} \rho}{{ }^{t} \rho}\left(\frac{{ }^{0} L}{{ }^{0} L+\Delta L}\right)^{2} \frac{{ }^{t} P}{{ }^{t} A} ; \quad \delta \epsilon_{11}=\frac{\Delta L}{{ }^{0} L}+\frac{1}{2}\left(\frac{\Delta L}{{ }^{0} L}\right)^{2} \\
& { }^{0} \rho{ }^{0} L^{0} A={ }^{\prime} \rho\left({ }^{0} L+\Delta L\right)^{t} A ; \quad{ }_{6} S_{11}=\frac{{ }^{0} L}{{ }^{0} L+\Delta L} \frac{{ }^{\prime} P}{{ }^{0} A}  \tag{b}\\
& { }^{t} P={ }_{6} S_{11}{ }^{0} A \frac{{ }^{0} L+\Delta L}{{ }^{0} L}
\end{align*}
$$

