
FEM2 : Finite element Method 2

p. 538-548
Exercice 6.14



• Show that the second Piola-Kirchhof 
stress tensor is invariant under a rigid g
rotation of the material.



• Second Piola-Kirchhof stress tensorSecond Piola Kirchhof stress tensor
Mass density Cauchy stress tensor

2 d t2nd term
Piola-Kirchhof stress
tensor

Inverse Deformation tensor

tensor



• If rigid body rotation is applied to material from time t to 
time t+Δt, the deformation gradient change to

Deformation : Deformation 
Matrix at t+Δt, : Matrix at time t

Vector of external apply force … Rotation force
Orthogonal matrix : RTR = RRT =I

End Hence :

Inverse deformation : Inverse deformation
gradient at t+Δt  : (b)

: Inverse deformation 
gradient at t



At t :

At  t+Δt :

No density changey g

During the rigid body rotation, the stress component remain constant g g y , p
in the rotating coordinate system. 

(d)



=0
tS0

Mean: t+Δt
0S = t

0S0S  0S 

second Piola-Kirchhof stress tensor is 
invariant under a rigid rotation of the material



Exercice 6.15

FEM2 : Finite element Method 2



A four element node is subject to a stress (initial stress)     

The element is rotated from time 0 to time Δt as rigid body trough large 
angle θ and without stress change

So magnitude =

Fix point :



• Second Piola-Kirchhof tensor at time 0 = Cauchy stress tensor ,

,because element deformation are 0

• Component of the Cauchy stress tensor at time Δt expressed in the
coordinates axes 0x1, 0x2

(a)

(b)

S :
Second 

Piola-Kirchhof stress tensor

Rotation tensor Transpose Rotation tensor



• Relation between the Cauchy stress and the 
second Piola-Kirchhof stresses at time Δt :

(c)

Cauchy stress
at time Δt

Second Piola-Kirchhof stress
at  time Δt

Deformation gradient tensor and 
Transposed tensor  at time Δt



In this case, there is no density change at time Δt

Deformation gradient evaluation

t+Δtx1
t+Δtx2Node

1

2

3

4





Position node 4 at 
Time Δt

Position node 4 at 
Time 0

θ

(1,-1)

(2 cos θ +1,2 sin θ – 1) 

2 cm

Δtx1 Δtx2

0x1

0x2

Example node 4

2 cm



(-1 , -1)

(2cos θ - 1 - 2sin θ,2sin θ - 1)

(-1 - 2sin θ, 2 cos θ - 1)

(2 cosθ-1,2sin θ-1)

Fix node



Deformation tensor a time t :

Gradient deformation tensor a time t :



Δt
0X =  



Example :



(d)

Compute



Substituting 

and 

(b)

(d)
in

(d)



Because                              ,                          and 

Show that component of the second Piola-Kirchhoh stress tensor did not change
During th erigid body relation. There is no change because in this case the 
Deformation gradient corresponds to a rotation matrix :

=

Rotation tensor Transpose Rotation tensor



6.3 Displacement-Based 
isoparametric continuum finite 

elements
p.538-548

Chap.6 Finite Element Analysis in 
Solid and Structural Mechanics



6.3 Introduction

• From previous section (Chap.5) :
Developed linearized principle of virtual displacements in 

continuum form. Only variable is displacement u.

If only nodal point displacement as degree of freedom, 
finite element matrix is a full linearization of the virtual 
displacement at time t.

The derivation will show that if other displacement degree 
of freedom like rotation or stress mixed, the linearization 
is more efficiently achieved by direct Taylor expansion.



6.3.1. Linearization of the principle of virtual work 
with respect to finite element variable

• Prininciple of virtual displacement In the total Lagrangian
formulation’

• We linearize the expression and assume t+ΔtR

independent of the deformation

Strain tensor



• The second term

• And next :

• For isoparametric displacement-based 
continuum elements with nodal displacement 
degrees of freedom, both expressions can be 
directly and easily be employed to obtain the 
same finite element equations. For rotational 
element (6.96) is more direct

(6.92)



6.3.2 General Matrix Equations of Displacement-
Based Continuum Elements

• We consider in more detail the matrices of isoparametric
continuum  finite element with displacement degrees 
freedom only.

• Basic step in the derivation of the governing finite 
element equations are the same as those used in linear 
analysis.

• By invoking the linearized principle of virtual 
displacement for each of the nodal points displacement 
in turn the governing finite element equation are 
obtained.

• As in linear analysis we need to consider a single 
element of a specific type in the derivation because 
equation of equilibrium are an assemblage of elements 
directly constructed from using direct stiffness 
procedure.



• By substituting the element coordinate and displacement 
interpolation into the equation we did in linear analysis, we obtain for 
a single element or for an assemblage of elements :

In material-nonlinear-only analysis

strain

Displacement vector

External forces







6.3.3. Truss and Cable Element

• Truss element : structural element capable of transmitting stresses 
only in the direction normal to the cross-sectional area

• We consider a truss element that has arbitrary orientation in space



• Element described by two to four nodes as Fig.6.3. It subjected to 
large displacements an large strains.

• Global coordinates of a nodal points
At time 0 : 0x1

k, 0x2
k, 0x3

k, 0x4
k

At time t : tx1
k, tx2

k, tx3
k, tx4

k

Where k=1 … N with N = nodes numbers (2 ≤ N ≤ 4)



The nodal point coordinate assume to determinate 
the spatial configuration of the truss a time 0 and t using  :

Where the Interpolation functions hk(r) are defined 



• Since for truss element the only stress is the normal 
stress on its cross-sectional area, we consider the 
corresponding longitudinal strain. We have the TL 
formulation : 



• Where 0s(r) is the arc length at time 0 of the material point 
0x1(r),0x2(r),0x3(r) given by :



The increment in the strain component 0tε11  is denoted

Strains :

For the strain-displacement matrices we define 



And hence 

With J-1 =dr/d0s

With J-1 =dr/d0s
The only nonzero component is          which we assume to be given as a function of 
Green-Lagrange strain        at time t. The tangent stress-strain relationship 
Is therefore.

The above relation can be employed to develop the UL formulation and the
Materially-nonlinear formulation.

Incremental stress-strain
material property matrix :

Volume-displacement
interpolation matrix



Ex 6.16



• For the 2 nodes element :
Develop the tangent stiffness matrix and force vector at 

time t. Consider large displacement and large strain 
conditions.





By geometry and using 

We compute

And obtain

Using TL formulation we express 0e11 and 0η11. The truss element 
Undergoes displacement only in the 0x1,0x2 plane



• We replace the result into

• And hence



• The tangent matrix and force vector are

• In the total Lagrangian formulation we 
assume that 0tS11 is given in term of 0tε11

If we use t0S11 = E t0ε11, we have 0C1111 = E

Linear strain stiffness matrix

Non linear strain 
Stiffness matrix,independent from θ



• Where tP is the current force carried in the 
truss element. Here we have used, with 
the Cauchy stress equal to tP/A
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