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Method of Finite Elements II

Contents of Today's Lecture

• Motivation, overview and organization of the course

• Introduction to non-linear analysis

• Formulation of the continuum mechanics incremental equations of 
motion
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Method of Finite Elements II

Motivation, overview and organization of the course

• Motivation

In FEM 1 we learned about the steady state analysis of linear 
systems

however,

the systems we are dealing with in structural engineering are 
generally not steady state and also not linear

We must be able to assess the need for a particular type of 
analysis and we must be able to perform it
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Method of Finite Elements II

Motivation, overview and organization of the course

• Motivation

What kind of problems are not steady state and linear?

E.g. when the:

material behaves non-linearly

deformations become big (p-Δ effects)

loads vary fast compared to the eigenfrequencies of the 
structure

General feature: Response becomes load path dependent
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Method of Finite Elements II

Motivation, overview and organization of the course

• Motivation

What is the “added value” of being able to assess the non-linear 
non-steady state response of structures ?

E.g. assessing the:

- structural response of structures to extreme events (rock-fall,    
earthquake, hurricanes)

- performance (failures and deformations) of soils

- verifying simple models
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Method of Finite Elements II

Motivation, overview and organization of the course

• Collapse Analysis of the 
World Trade Center
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Method of Finite Elements II

Motivation, overview and organization of the course

• Collapse Analysis of the World Trade Center
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Method of Finite Elements II

Motivation, overview and organization of the course

• Analysis of ultimate collapse capacity of jacket structure
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Method of Finite Elements II

Motivation, overview and organization of the course

• Analysis of ultimate collapse capacity of jacket structure
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Method of Finite Elements II

Motivation, overview and organization of the course

• Analysis of soil performance
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Method of Finite Elements II

Motivation, overview and organization of the course

• Analysis of bridge response
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Method of Finite Elements II

Motivation, overview and organization of the course

Steady state problems (Linear/Non-linear):

The response of the system does not change over time

Propagation problems (Linear/Non-linear):

The response of the system changes over time 

Eigenvalue problems:

No unique solution to the response of the system 

=KU R

( ) ( ) ( ) ( )t t t t+ + =MU CU KU R

λ=Av Bv
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Method of Finite Elements II

Motivation, overview and organization of the course

• Organization

The lectures will be given by:

M. H. Faber

Exercises will be organized/attended by:

Jianjun Qin

By appointment, HIL E13.1.



Swiss Federal Institute of Technology Page 14

Method of Finite Elements II

Motivation, overview and organization of the course

• Organization

PowerPoint files with the presentations will be uploaded on our 
homepage one day in advance of the lectures

http://www.ibk.ethz.ch/fa/education/FE_II

The lecture as such will follow the book:

"Finite Element Procedures" by K.J. Bathe, Prentice Hall, 1996
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Method of Finite Elements II

Motivation, overview and organization of the course

• Overview
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Method of Finite Elements II

• Overview

Motivation, overview and organization of the course
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Method of Finite Elements II

Motivation, overview and organization of the course

• Overview
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Method of Finite Elements II

Introduction to non-linear analysis

• Previously we considered the solution of the following linear and 
static problem:

for these problems we have the convenient property of 
linearity, i.e: 

=KU R

,    1

,    1

λ λ

λ λ∗

= =

⇓

= ≠

KU R

U U

If this is not the case we are dealing 
with a non-linear problem!
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Method of Finite Elements II

Introduction to non-linear analysis

• Previously we considered the solution of the following linear and 
static problem:

we assumed: 

small displacements when developing the stiffness matrix K and 
the load vector R, because we performed all integrations over 
the original element volume 

that the B matrix is constant independent of element 
displacements

the stress-strain matrix C is constant

boundary constraints are constant     

=KU R
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Method of Finite Elements II

Introduction to non-linear analysis
• Classification of non-linear analyses

Type of analysis Description Typical 
formulation used 

Stress and strain 
measures used 

Materially-nonlinear 
only 

Infinitesimal 
displacements and 
strains; stress train 
relation is non-
linear 

Materially-
nonlinear-only 
(MNO) 

Engineering strain 
and stress 

Large 
displacements, large 
rotations but small 
strains 

Displacements and 
rotations of fibers 
are large; but fiber 
extensions and 
angle changes 
between fibers are 
small; stress strain 
relationship may be 
linear or non-linear 

Total Lagrange (TL) 
 
 
 
 
Updated Lagrange 
(UL) 

Second Piola-
Kirchoff stress, 
Green-Lagrange 
strain 
 
Cauchy stress, 
Almansi strain 

Large 
displacements, large 
rotations and large 
strains 

Displacements and 
rotations of fibers 
are large; fiber 
extensions and 
angle changes 
between fibers may 
also be large; stress 
strain relationship 
may be linear or 
non-linear 

Total Lagrange (TL) 
 
 
 
Updated Lagrange 
(UL) 

Second Piola-
Kirchoff stress, 
Green-Lagrange 
strain 
 
Cauchy stress, 
Logarithmic strain 
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Method of Finite Elements II

Introduction to non-linear analysis
• Classification of non-linear analyses

Δ

2
P

2
P ε

σ

1

E

0.04ε <

Linear elastic (infinitesimal displacements)

L

L

/
/

P A
E

L

σ
ε σ

ε

=
=

Δ =
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Method of Finite Elements II

Introduction to non-linear analysis
• Classification of non-linear analyses

Δ

2
P

2
P ε

σ

Materially nonlinear only (infinitesimal 
displacements, but nonlinear stress-strain relation)

L

L

/

0.04

Y Y

T

P A

E E

σ
σ σ σε

ε

=
−

= +

<

/P A

1

E
1 TEYσ
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Method of Finite Elements II

Introduction to non-linear analysis
• Classification of non-linear analyses

Large displacements and large rotations but 
small strains (linear or nonlinear material behavior)

x

y

L

x′

y′

L

′Δ

ε′

0.04
L

ε
ε

′ <
′ ′Δ =
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Method of Finite Elements II

Introduction to non-linear analysis
• Classification of non-linear analyses

Large displacements, large rotations and 
large strains (linear or nonlinear material behavior)
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Method of Finite Elements II

Introduction to non-linear analysis
• Classification of non-linear analyses

Δ

2
P

Chang in boundary conditions

2
P
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Method of Finite Elements II

Introduction to non-linear analysis
• Example: Simple bar structure

Section a Section b

10cmaL = 5cmbL =

tR

tu2Area 1cm=

ε

σ

1

E
1 TEYσ

0.002Yε =

7 2

5 2

10 N / cm
10 N / cm

: yield stress
: yield strain

T

Y

Y

E
E
σ
ε

=

=

1

2

3

4

2 4 6

tR

t
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Method of Finite Elements II

Introduction to non-linear analysis
• Example: Simple bar structure

Section a Section b

10cmaL = 5cmbL =

tR

tu2Area 1cm=

,

 (elastic region)

(plastic region)

t t
t t

a b
a b

t t t
b a

t
t

t
t Y

Y
T

u u
L L

R A A

E

E

ε ε

σ σ

σε

σ σε ε

= = −

+ =

=

−
= +

ε

σ

1

E
1 TEYσ

0.002ε =

7 2

5 2

10 N / cm
10 N / cm

: yield stress
: yield strain

T

Y

Y

E
E
σ
ε

=

=

1

2

3

4

2 4 6

tR

t

(unloading)
E
σε Δ

Δ =
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Method of Finite Elements II

Introduction to non-linear analysis
• Example: Simple bar structure

Section a Section b

10cmaL = 5cmaL =

tR

tu2Area 1cm=

,

 (elastic region)

(plastic region)

t t
t t

a b
a b

t t t
b a

t
t

t
t Y

Y
T

u u
L L

R A A

E

E

ε ε

σ σ

σε

σ σε ε

= = −

+ =

=

−
= +

(unloading)
E
σε Δ

Δ =

ε

σ

1

E
1 TEYσ

0.002ε =

7 2

5 2

10 N / cm
10 N / cm

: yield stress
: yield strain

T

Y

Y

E
E
σ
ε

=

=

1

2

3

4

2 4 6

tR

t

6

1 1( )
3 10

2,
3 3

t
t t t

a b

t t

a b

RR EA u u
L L

R R
A A

σ σ

= + ⇒ =
⋅

= = −

Both sections elastic
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Introduction to non-linear analysis
• Example: Simple bar structure

Section a Section b

10cmaL = 5cmbL =

tR

tu2Area 1cm=

,

 (elastic region)

(plastic region)

t t
t t

a b
a b

t t t
b a

t
t

t
t Y

Y
T

u u
L L

R A A

E

E

ε ε

σ σ

σε

σ σε ε

= = −

+ =

=

−
= +

(unloading)
E
σε Δ

Δ =

ε

σ

1

E
1 TEYσ

0.002ε =

7 2

5 2

10 N / cm
10 N / cm

: yield stress
: yield strain

T

Y

Y

E
E
σ
ε

=

=

1

2

3

4

2 4 6

tR

t

3section b will be plastic when 
2

t
YR Aσ

∗

=

Section a is elastic while section b is plastic

, ( )
t t

a b T Y Y
a b

u uE E
L L

σ σ ε σ= = − − −

2
6

/ 1.9412 10
/ / 1.02 10

tt
t T

T Y Y
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t T Y Y
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E A uEA uR E A A
L L
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E L E L

ε σ

ε σ −

= + − + ⇒
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+ ⋅
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Introduction to non-linear analysis
• What did we learn from the example?

The basic problem in general nonlinear analysis is to find a state of 
equilibrium between externally applied loads and element nodal 
forces

( )

( ) ( ) ( )

0

t m

t t

t t t t
B S C

t t
I

t t m T t m t m

m V

dVτ

− =

= + +

=

=∑ ∫

R F

R R R R

F R

F B

We must achieve equilibrium 
for all time steps when 
incrementing the loading

Very general approach

includes implicitly also dynamic
analysis!
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Method of Finite Elements II

Introduction to non-linear analysis
• The basic approach in incremental analysis is

0
assuming that  is independent of the deformations we have

t t t t

t t

t t t

+Δ +Δ

+Δ

+Δ

− =

= +

R F
R

F F F

We know the solution tF at time t and F is the 
increment in the nodal point forces corresponding 
to an increment in the displacements and stresses 
from time t to time t+Δt this we can approximate by

t=F KU

Tangent stiffness matrix
t

t
t

∂
=
∂

FK
U
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Method of Finite Elements II

Introduction to non-linear analysis
• The basic approach in incremental analysis is

We may now substitute the tangent stiffness matrix into the 
equlibrium relation

t t t t

t t t

+Δ

+Δ

= −

⇓

= +

KU R F

U U U
which gives us a scheme for the calculation of 
the displacements

the exact displacements at time t+Δt correspond 
to the applied loads at t+Δt however we only
determined these approximately as we used a tangent 
stiffness matrix – thus we may have to iterate to find the 
solution
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Method of Finite Elements II

Introduction to non-linear analysis
• The basic approach in incremental analysis is

We may use the Newton-Raphson iteration scheme to find the 
equlibrium within each load increment

( 1) ( ) ( 1)

( ) ( 1) ( )

(0) (0) (0)

with initial conditions
;    ;        

t t i i t t t t i

t t i t t i i

t t t t t t t t t

+Δ − +Δ +Δ −

+Δ +Δ −

+Δ +Δ +Δ

Δ = −

= + Δ

= = =

K U R F

U U U

U U K K F F

(out of balance load vector)
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Introduction to non-linear analysis
• The basic approach in incremental analysis is

It may be expensive to calculate the tangent stiffness 
matrix and,

in the Modified Newton-Raphson iteration scheme it is thus 
only calculated in the beginning of each new load step

in the quasi-Newton iteration schemes the secant 
stiffness matrix is used instead of the tangent matrix



Swiss Federal Institute of Technology Page 35

Method of Finite Elements II

Introduction to non-linear analysis
• We look at the example again – simple bar ( two load steps)

( ) ( 1) ( 1)

( ) ( 1) ( )

(0) (0) (0)

( ) ( )

with initial conditions
;         

;   

   if section is elastic
   if se

t t i t t t t i t t i
a b a b

t t i t t i i

t t t t t t t t t
a a b b

t t
t t

a b
a b

t

T

K K u R F F

u u u

u u F F F F

CA CAK K
L L

E
C

E

+Δ +Δ − +Δ −

+Δ +Δ −

+Δ +Δ +Δ

+ Δ = − −

= + Δ

= = =

= =

=
= ction is plastic
⎧
⎨
⎩
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Introduction to non-linear analysis
• We look at the example again – simple bar

0 0 (1) 1 1 (0) 1 (0)

4
(1) 3

7

1 (1) 1 (0) (1) 3

1 (1)
1 (1) 4

1 (1)
1 (1)

Load step 1: 1:
( )

2 10 6.6667 101 110 ( )
10 5

Iteration 1: ( 1)
6.6667 10

6.6667 10  <  (elastic section!)

1.3333

a b a b

a Y
a

b
b

t
K K u R F F

u

i
u u u

u
L

u
L

ε ε

ε

−

−

−

=

+ Δ = − −

⇓

×
Δ = = ×

+

=

= + Δ = ×

= = ×

= = 3

1 (1) 3 1 (1) 4

0 0 (2) 1 1 (1) 1 (1)

10  <  (elastic section!)

6.6667 10 ;         1.3333 10

( ) 0

Y

a b

a b a b

F F

K K u R F F

ε−×

= × = ×

+ Δ = − − = 1 3

Convergence in one iteration!
6.6667 1̀0u −= ×
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Introduction to non-linear analysis
• We look at the example again – simple bar

1 1 (1) 2 2 (0) 2 (0)

4 3 4
(1) 3

7

2 (1) 2 (0) (1) 2

2 (1) 3

2

Load step 2: 2 :
( )

(4 10 ) (6.6667 10 ) (1.333 10 ) 6.6667 101 110 ( )
10 5

Iteration 1: ( 1)
1.3333 10

1.3333 10  <  (elastic section!)

a b a b

a Y

t
K K u R F F

u

i
u u u
ε ε

ε

−

−

−

=

+ Δ = − −

⇓

× − × − ×
Δ = = ×

+

=

= + Δ = ×

= ×
(1) 3

1 (1) 4 1 (1) 2 (1) 4

1 1 (2) 2 2 (1) 2 (1) (2) 3

2.6667 10  >  (plastic section!)

1.3333 10 ;         ( ( ) ) 2.0067 10

( ) 2.2 10

b Y
T

a b b Y Y

a b a b

F F E A

K K u R F F u

ε

ε ε σ

−

−

= ×

= × = − + = ×

+ Δ = − − ⇒ Δ = ×
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Introduction to non-linear analysis
• We look at the example again – simple bar

i Δ u (i) 2 u (i)

2 1.45E-03 1.55E-02
3 1.45E-03 1.70E-02
4 9.58E-04 1.79E-02
5 6.32E-04 1.86E-02
6 4.17E-04 1.90E-02
7 2.76E-04 1.93E-02



Swiss Federal Institute of Technology Page 39

Method of Finite Elements II

The continuum mechanics incremental equations
• The basic problem:

We want to establish the solution using an incremental 
formulation

The equilibrium must be established for the considered body in 
its current configuration

In proceeding we adopt a Lagrangian formulation where we 
track the movement of all particles of the body (located in a 
Cartesian coordinate system)   

Another approach would be an Eulerian formulation where the 
motion of material through a stationary control volume is 
considered
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Method of Finite Elements II

The continuum mechanics incremental equations
• The basic problem:

0 t t+ t
1 1 1 1(or , , )x x x xΔ

2x

3x

0

0

Configuration at time 0
Surface area 
Volume 

S
V

t

t

Configuration at time 
Surface area 
Volume 

t
S

V

Configuration at time 
Surface area 
Volume 

t t

t t

t t
S

V

+Δ

+Δ

+ Δ

Configuration corresponding to variation in 
displacements  at t tδ +Δu u

1

2

3

u
u
u

δ
δ δ

δ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

u
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The continuum mechanics incremental equations
• The Lagrangian formulation

We express equilibrium of the body 
at time t+Δt using the principle of 
virtual displacements

0 t t+ t
1 1 1 1(or , , )x x x xΔ

2x

3x

0

0

Configuration at time 0
Surface area 
Volume 

S
V

t

t

Configuration at time 
Surface area 
Volume 

t
S

V

Configuration at time 
Surface area 
Volume 

t t

t t

t t
S

V

+Δ

+Δ

+ Δ

Configuration corresponding to variation in 
displacements  at t tδ +Δu u

1

2

3

u
u
u

δ
δ δ

δ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

u

:  Cartesian components of the Cauchy stress tensor
1 ( ) strain tensor corresponding to virtual displacements
2

:  Components of virtua

t t

t t t t t t
t t ij

V

t t

ji
t t ij t t t t

j i

i

e d V R

uue
x x

u

τδ

τ
δδδ

δ

+Δ

+Δ +Δ +Δ
+Δ

+Δ

+Δ +Δ +Δ

=

∂∂
= + =

∂ ∂

∫

l displacement vector imposed at time 

:  Cartesian coordinate at time 

:  Volume at time 

t t t t
f

t t
i

t t

t t t t B t t t t S S t t
i i i i

V S

t t

x t t

V t t

R f u d V f u d Sδ δ
+Δ +Δ

+Δ

+Δ

+Δ +Δ +Δ +Δ +Δ

+ Δ

+ Δ

+ Δ

= +∫ ∫
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The continuum mechanics incremental equations
• The Lagrangian formulation

We express equilibrium of the body 
at time t+Δt using the principle of 
virtual displacements

0 t t+ t
1 1 1 1(or , , )x x x xΔ

2x

3x

0

0

Configuration at time 0
Surface area 
Volume 

S
V

t

t

Configuration at time 
Surface area 
Volume 

t
S

V

Configuration at time 
Surface area 
Volume 

t t

t t

t t
S

V

+Δ

+Δ

+ Δ

Configuration corresponding to variation in 
displacements  at t tδ +Δu u

1

2

3

u
u
u

δ
δ δ

δ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

u

where
:  externally applied forces per unit volume

:  externally applied surface tractions per unit surface

:  surface at time 

t t t t
f

t t t t B t t t t S S t t
i i i i

V S

t t B
i

t t S
i

t t
f

R f u d V f u d S

f

f

S t t

u

δ δ

δ

+Δ +Δ

+Δ +Δ +Δ +Δ +Δ

+Δ

+Δ

+Δ

= +

+ Δ

∫ ∫

:   evaluated at the surface S t t
i i fu Sδ +Δ
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The continuum mechanics incremental equations
• The Lagrangian formulation

We recognize that our derivations from linear finite element theory 
are unchanged – but applied to the body in the configuration at 
time t+Δt
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The continuum mechanics incremental equations
• In the further we introduce an appropriate notation:

0

0

0

Coordinates and displacements are related as:

Increments in displacements are related as:
 

Reference configurations are indexed as e.g.:
 where the lower

t t
i i i

t t t t
i i i

t t t
t i i i

t t S
i

x x u

x x u

u u u

f

+Δ +Δ

+Δ

+Δ

= +

= +

= −

0
0

0 , ,0

 left index indicates the reference configuration
       

=

Differentiation is indexed as:

,       

t t t t
ij t t ij

t t
t t i m

i j t t m n t t
j n

u xu x
x x

τ τ+Δ +Δ
+Δ

+Δ
+Δ

+Δ +Δ

∂ ∂
= =

∂ ∂


