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Mode Superposition1
Dynamic Equilibrium Equation

RKUUCUM =++ &&&

Solving methods:
• Central difference

• Houbolt

• Wilson θ

• Newmark
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Mode Superposition1
Effectivity of this methods

Implicite methods
(Houbolt, Wilson, Newmark)

1.) Initial calculations (LDLT)  ->  Number of operations:

2.) For each time step (Mult.)  -> Number of operations

2

2
1

kmno ⋅⋅=

kmno ⋅⋅= 2

Where: n : matrix size,  mk: half bandwidth

Number of operation is growing with bandwidth !
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Mode Superposition1
Reduction of bandwidth
1.) Optimize mesh topology

-> Limited effect

2.) Transformation
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Mode Superposition1
Modal generalized displacements
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Transformation with unknown P, such that mk smaller

( ) ( )tXPtU ⋅=

Dynamic Equation in modal displacements

In theory many different transformations possible –

in practice only one transformation matrix established !
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2D-Elements; linear1
Transformation matrix

02 =− φωφ MK

Free-vibration equilibrium solutions with damping neglected:

By inserting U we obtain a eigenproblem:
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Postulated solution

with n solutions for eigenvector
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2D-Elements; linear1
Transformation matrix
Definitions

],...,,[ 21 nφφφ=Φ
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Since the eigenvectors are M - orthonormal
2Ω=ΦΦ=ΦΦ KIM TT

Eigenproblem for n equations

02 =ΦΩ−Φ MK

M and K diagonalized with TRANSFORMATION MATRIX Φ

],...,,[ 21 nφφφ=Φ )()( tXtU ⋅Φ=
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2D-Elements; linear1
Transformed equation, Damping neglected
Matrix equation
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Single decoupled equation i
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Transforming the initial conditions
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2D-Elements; linear1
Solution of decoupled equation i
Duhamel integral
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Example2
Example 9.7;  p. 789



Method of Finite Elements II Page 12

Example2
Exact solution with mode superposition

Time history curve of exact solution
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Example2
Newmark method
Two possibilities, leading to the same result

1.) Integrate straight forward -> SLOW

2.) Transform into modal displacements , 
integrate the decoupled equations , transforme back -> FAST

RKUUM =+&&

RKUUM =+&& RXX TΦ=Ω+ 2&&
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Example2
Newmark in MATLAB
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Originally proposed as an 
unconditionally stable
scheme by Newmark
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Example2
Newmark method

exact solution vs. Newmark
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Example2
Benchmark

Time history curve
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Modes3
Number of modes in calculation
For n lumped masses in a system, n modes were found - but for

a good approximation often only a few are needed!

Choosing the right modes for calculation
In general the lowest frequencies and modes are approximated in 

the best way  -> upper bounds for frequencies are found

How many and which modes are taken for calculation depends on 
the problem:

• Earthquake:  In some cases only the 10 lowest modes

• Shock:  Many modes necessary, p > 2/3 n
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Modes3
Modes in Example 9.7

modes
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Modes3
Only first mode in Example 9.7 for displacement u1

u1: first mode - exact solution
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Modes3
Error Measurement
The accuracy of a solution p < n can be measured…

..and made better by the so called static correction

( )
( ) ( ) ( )[ ]

( )
2

2

tR

tKUtUMtR
t

pp
p

+−
=

&&
ε

( ) ( )tRtUK

MrRR
p

i
ii

∆=∆⋅

−=∆ ∑
=1

)( φ

Mode Superposition has more advantages then only
the reduction of number of necessary operations! 
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Include damping4
Include damping
• Modal transformation was derived without damping

• Transformation Matrix Φ diagonalizes M and K ….

• …but not a „free“ chosen damping Matrix C. In this case the
equations stay coupled and mode Superposition isn‘t possible

Rayleigh damping
• If C is a linear combination of M and K decoupling is possible, this

is called Rayleigh damping

KMC ⋅+⋅= βα

• In this case, there are only two free parameter for fitting the
damping rate
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Include damping4
Decoupled equations in case of Rayleigh daamping
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If an accurate modelling of 
damping is necessary:

• Direct integration

• Caughey series
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Response contributions5
Response contributions
Solving a dynamic loaded, damped system, two response contributions

can be observed:

• Transient, damped out solution part

• A permanent dynamic response, which is the static response
multiplicated by a 

dynamic load factor


