

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

Prof. Dr. Michael Havbro Faber Dr. Nebojsa Mojsilovic Swiss Federal Institute of Technology ETH Zurich, Switzerland

Contents of Today's Lecture

- Motivation, overview and organization of the course
- Introduction to non-linear analysis
- Formulation of the continuum mechanics incremental equations of motion

Motivation

In FEM 1 we learned about the steady state analysis of linear systems

however;

the systems we are dealing with in structural engineering are generally not steady state and also not linear

We must be able to assess the need for a particular type of analysis and we must be able to perform it

Motivation

What kind of problems are not steady state and linear?

E.g. when the:

material behaves non-linearly

deformations become big (p- Δ effects)

loads vary fast compared to the eigenfrequencies of the structure

General feature: Response becomes load path dependent

• Motivation

What is the "added value" of being able to assess the non-linear non-steady state response of structures ?

- **E.g.** assessing the;
- structural response of structures to extreme events (rock-fall, earthquake, hurricanes)
- performance (failures and deformations) of soils
- verifying simple models

 $\mathbf{K}\mathbf{U} = \mathbf{R}$

Motivation, overview and organization of the course

Steady state problems (Linear/Non-linear):

The response of the system does not change over time

Propagation problems (Linear/Non-linear):

The response of the system changes over time $M\ddot{U}(t) + C\dot{U}(t) + KU(t) = R(t)$

Eigenvalue problems:

No unique solution to the response of the system $\mathbf{A}\mathbf{v} = \lambda \mathbf{B}\mathbf{v}$

Organisation

The lectures will be given by:

M. H. Faber and N. Mojsilovic

Exercises will be organized/attended by:

K. Nishijima

Office hours: 14:00 – 16:00 on Thursdays, HIL E22.3.

Organisation

PowerPoint files with the presentations will be up-loaded on our home-page one day in advance of the lectures

http://www.ibk.ethz.ch/fa/education/FE_II

The lecture as such will follow the book:

"Finite Element Procedures" by K.J. Bathe, Prentice Hall, 1996

• Overview

Date	Subject(s)	Course book Pages:
28.09.2007	Non-linear Finite Element Calculations in solids and structural mechanics	485-502
	 Introduction to non-linear calculations The incremental approach to continuum mechanics 	
05.10.2007	 Non-linear Finite Element Calculations in solids and structural mechanics Deformation gradients, strain and stress tensors The Langrangian formulation – only material non-linearity 	502-528
12.10.2007	 Non-linear Finite Element Calculations in solids and structural mechanics Displacement based iso-parametric finite elements in continuum mechanics 	538-548
19.10.2007	 Non-linear Finite Element Calculations in solids and structural mechanics Displacement based iso-parametric finite elements in continuum mechanics 	548-560
Method of Finite Elemen	nts II	

• Overview

Date	Subject(s)	Course book Pages:
26.10.2007	Non-linear Finite Element Calculations in solids and structural mechanics	561-578
	 Total Langrangian formulation Extended Langrangian formulation Structural elements 	
02.11.2007	 Non-linear Finite Element Calculations in solids and structural mechanics Introduction of constitutive relations Non-linear constitutive relations 	581-617
09.11.2007	 Non-linear Finite Element Calculations in solids and structural mechanics Contact problems Practical considerations 	622-640
16.11.2007	 Dynamical Finite Element Calculations Introduction Direct integration methods 	768-784
Method of Finite Eleme	nts II	

• Overview

Date	Subject(s)	Course book Pages:
23.11.2007	 Dynamical Finite Element Calculations Mode superposition 	785-800
30.11.2007	 Dynamical Finite Element Calculations Analysis of direct integration methods 	801-815
07.12.2007	 Dynamical Finite Element Calculations Solution of dynamical non-linear problems 	824-830
14.12.2007	 Solution of Eigen value problems The vector iteration method 	887-910
21.12.2007	 Solution of Eigen value problems The transformation method 	911-937

• Previsously we considered the solution of the following linear and static problem:

KU = R

for these problems we have the convenient property of linearity, i.e:

$$\mathbf{K}\mathbf{U}^* = \lambda \mathbf{R}$$
$$\bigcup$$
$$\mathbf{U}^* = \lambda \mathbf{U}$$

If this is not the case we are dealing with a non-linear problem!

• Previsously we considered the solution of the following linear and static problem:

KU = R

we assumed:

small displacements when developing the stiffness matrix K and the load vector R, because we performed all integrations over the original element volume

that the B matrix is constant independent of element displacements

the stress-strain matrix C is constant

boundary constriants are constant

Type of analysis	Description	Typical	Stress and strain
		formulation used	measures used
Materially-nonlinear	Infinitesimal	Materially-	Engineering strain
only	displacements and	nonlinear-only	and stress
	strains; stress train	(MNO)	
	relation is non-		
	linear		
Large	Displacements and	Total Lagrange (TL)	Second Piola-
displacements, large	rotations of fibers		Kirchoff stress,
rotations but small	are large; but fiber		Green-Lagrange
strains	extensions and		strain
	angle changes		
	between fibers are	Updated Lagrange	Cauchy stress,
	small; stress strain	(UL)	Almansi strain
	relationship may be		
	linear or non-linear		
Large	Displacements and	Total Lagrange (TL)	Second Piola-
displacements, large	rotations of fibers		Kirchoff stress,
rotations and large	are large; fiber		Green-Lagrange
strains	extensions and		strain
	angle changes	Updated Lagrange	
	between fibers may	(UL)	Cauchy stress,
	also be large; stress		Logarithmic strain
	strain relationship		
	may be linear or		
	non-linear		

Classification of non-linear analysis

Changing boundary conditions

$${}^{t}\varepsilon_{a} = \frac{{}^{t}u}{L_{a}}, {}^{t}\varepsilon_{b} = -\frac{{}^{t}u}{L_{b}}$$
$${}^{t}R + {}^{t}\sigma_{b}A = {}^{t}\sigma_{a}A$$
$${}^{t}\varepsilon = \frac{{}^{t}\sigma}{E} \text{ (elastic region)}$$
$${}^{t}\varepsilon = \varepsilon_{Y} + \frac{{}^{t}\sigma - \sigma_{Y}}{E_{T}} \text{ (plastic region)}$$
$$\Delta\varepsilon = \frac{\Delta\sigma}{E} \text{ (unloading)}$$

Both sections elastic

$${}^{t}R = EA^{t}u(\frac{1}{L_{a}} + \frac{1}{L_{b}}) \Longrightarrow {}^{t}u = \frac{{}^{t}R}{3 \cdot 10^{-6}}$$
$$\sigma_{a} = \frac{{}^{t}R}{3A}, \sigma_{b} = -\frac{2}{3}\frac{{}^{t}R}{A}$$

Method of Finite Elements II

Page 22

Section a is elastic while section b is plastic

section b will be plastic when
$${}^{t^*}R = \frac{2}{3}\sigma_Y A$$

 $\sigma_a = E \frac{{}^{t}u}{L_a}, \sigma_b = E_T(\frac{{}^{t}u}{L_b} - \mathcal{E}_Y) - \sigma_Y$
 ${}^{t}R = \frac{EA{}^{t}u}{L_a} + \frac{E_TA{}^{t}u}{L_b} - E_T\mathcal{E}_YA + \sigma_YA \Rightarrow$
 ${}^{t}u = \frac{{}^{t}R/A + E_T\mathcal{E}_Y - \sigma_Y}{E/L_a + E/L_b} = \frac{{}^{t}R}{1.02 \cdot 10^6} - 1.9412 \cdot 10^{-2}$

• What did we learn from the example?

The basic problem in general nonlinear analysis is to find a state of equilibrium between externally applied loads and element nodal forces

$${}^{t}\mathbf{R} - {}^{t}\mathbf{F} = 0$$

$${}^{t}\mathbf{R} = {}^{t}\mathbf{R}_{B} + {}^{t}\mathbf{R}_{S} + {}^{t}\mathbf{R}_{C}$$

$${}^{t}\mathbf{F} = {}^{t}\mathbf{R}_{I}$$
$${}^{t}\mathbf{F} = \sum_{m} \int_{{}^{t}V^{(m)}} {}^{t}\mathbf{B}^{(m)T} {}^{t}\tau^{(m)} {}^{t}dV^{(m)}$$

includes implicitly also dynamic analysis!

• The basic approach in incremental anaylsis is

 $^{t+\Delta t}\mathbf{R}-^{t+\Delta t}\mathbf{F}=0$

assuming that ${}^{t+\Delta t}\mathbf{R}$ is independent of the deformations we have ${}^{t+\Delta t}\mathbf{F} = {}^{t}\mathbf{F} + \mathbf{F}$

We know the solution t F at time t and F is the increment in the nodal point forces corresponding to an increment in the displacements and stresses from time t to time t+ Δ t this we can approximate by

• The basic approach in incremental anaylsis is

We may now substitute the tangent stiffness matrix into the equibrium relation

$${}^{t}\mathbf{K}\mathbf{U} = {}^{t+\Delta t}\mathbf{R} - {}^{t}\mathbf{F}$$

$$\downarrow \downarrow$$

$${}^{t+\Delta t}\mathbf{U} = {}^{t}\mathbf{U} + \mathbf{U}$$

which gives us a scheme for the calculation of the displacements

the exact displacements at time $t+\Delta t$ correspond to the applied loads at $t+\Delta t$ however we only determined these approximately as we used a tangent stiffness matrix – thus we may have to iterate to find the solution

• The basic approach in incremental anaylsis is

We may use the **Newton-Raphson** iteration scheme to find the equibrium within each load increment

 $^{t+\Delta t}\mathbf{K}^{(i-1)}\Delta \mathbf{U}^{(i)} = {}^{t+\Delta t}\mathbf{R} - {}^{t+\Delta t}\mathbf{F}^{(i-1)}$ (out of balance load vector)

$$^{t+\Delta t}\mathbf{U}^{(i)} = {}^{t+\Delta t}\mathbf{U}^{(i-1)} + \Delta\mathbf{U}^{(i)}$$

with initial conditions

$$^{t+\Delta t}\mathbf{U}^{(0)} = {}^{t}\mathbf{U}; \quad {}^{t+\Delta t}\mathbf{K}^{(0)} = {}^{t}\mathbf{K}; \quad {}^{t+\Delta t}\mathbf{F}^{(0)} = {}^{t}\mathbf{F}$$

• The basic approach in incremental anaylsis is

It may be expensive to calculate the tangent stiffness matrix and;

in the Modified Newton-Raphson iteration scheme it is thus only calculated in the beginning of each new load step

in the **quasi-Newton** iteration schemes the secant stiffness matrix is used instead of the tangent matrix

• The basic problem:

We want to establish the solution using an incremental formulation

The equilibrium must be established for the considered body in ist current configuration

In proceeding we adopt a Lagrangian formulation where track the movement of all particles of the body (located in a Cartesian coordinate system)

Another approach would be an Eulerian formulation where the motion of material through a stationary control volume is considered

• The Lagrangian formulation

We express equilibrium of the body at time $t+\Delta t$ using the principle of virtual displacements

$$\int_{t+\Delta t_V} t+\Delta t \tau \delta_{t+\Delta t} e_{ij} d^{t+\Delta t} V = t+\Delta t R$$

$$x_{3}$$

$$x_{3}$$

$$x_{1} (\text{or } {}^{0}x_{1}, {}^{t}x_{1}, {}^{t+\Delta t}x_{1})$$
Configuration corresponding to variation in displacements $\delta \mathbf{u}$ at ${}^{t+\Delta t}\mathbf{u}$
Configuration at time $t + \Delta t$
Surface area ${}^{t+\Delta t}S$
Volume ${}^{t+\Delta t}V$
Configuration at time t
Surface area ${}^{t}S$
Volume ${}^{t}V$
Configuration at time 0
Volume ${}^{t}V$

$$x_{2}$$

 $t^{t+\Delta t}\tau$: Cartesian components of the Cauchy stress tensor

 $\delta_{t+\Delta t} e_{ij} = \frac{1}{2} \left(\frac{\partial \delta u_i}{\partial^{t+\Delta t} x_j} + \frac{\partial \delta u_j}{\partial^{t+\Delta t} x_i} \right) = \text{strain tensor corresponding to virtual displacements}$

 δu_i : Components of virtual displacement vector imposed at time $t + \Delta t$

 $t^{t+\Delta t}x_i$: Cartesian coordinate at time $t + \Delta t$

 $^{t+\Delta t}V$: Volume at time $t + \Delta t$

$${}^{t+\Delta t}R = \int_{t+\Delta t_V} {}^{t+\Delta t}f_i^B \delta u_i d^{t+\Delta t}V = \int_{t+\Delta t_{S_f}} {}^{t+\Delta t}f_i^S \delta u_i^S d^{t+\Delta t}S$$

The Lagrangian formulation

Swiss Federal Institute of

Technology

We express equilibrium of the body at time $t+\Delta t$ using the principle of virtual displacements

The Lagrangian formulation
We express equilibrium of the body
at time
$$t+\Delta t$$
 using the principle of
virtual displacements
 $t+\Delta t R = \int_{t+\Delta t_V} t+\Delta t \int_{t}^{B} \delta u_i d^{t+\Delta t} V = \int_{t+\Delta t_S_f} t+\Delta t \int_{t}^{S} \delta u_i^{S} d^{t+\Delta t} S^{t+\Delta t}$

ETH

 f_{i}^{B} : externally applied forces per unit volume f_{i}^{S} : externally applied surface tractions per unit surface $^{t+\Delta t}S_{f}$: surface at time $t + \Delta t$ δu_i^S : δu_i evaluated at the surface ${}^{t+\Delta t}S_f$

• The Lagrangian formulation

We recognize that our derivations from linear finite element theory are unchanged – but applied to the body in the configuration at time $t+\Delta t$

• In the further we introduce an appropriate notation:

Coordinates and displacements are related as:

$${}^{t}x_{i} = {}^{0}x_{i} + {}^{t}u_{i}$$
$${}^{t+\Delta t}x_{i} = {}^{0}x_{i} + {}^{t+\Delta t}u_{i}$$

Increments in displacements are related as:

$$_{t}u_{i}={}^{t+\Delta t}u_{i}-{}^{t}u_{i}$$

Reference configurations are indexed as e.g.:

 ${}^{t+\Delta t}_{0}f_{i}^{S}$ where the lower left index indicates the reference configuration

$$^{t+\Delta t} au_{ij} = {}^{t+\Delta t}_{t+\Delta t} au_{ij}$$

Differentiation is indexed as:

$${}^{t+\Delta t}_{0}u_{i,j} = \frac{\partial^{t+\Delta t}u_{i}}{\partial^{0}x_{j}}, \qquad {}^{0}_{t+\Delta t}x_{m,n} = \frac{\partial^{0}x_{m}}{\partial^{t+\Delta t}x_{n}}$$