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C t t f T d ' L tContents of Today's Lecture

M i i i d i i f h• Motivation, overview and organization of the course

• Introduction to non-linear analysisIntroduction to non-linear analysis

• Formulation of the continuum mechanics incremental equations of 
motion

Method of Finite Elements II
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M ti ti i d i ti f thMotivation, overview and organization of the course

M i i• Motivation

In FEM 1 we learned about the steady state analysis of linearIn FEM 1 we learned about the steady state analysis of linear 
systems

hhowever;

the systems we are dealing with in structural engineering are 
generally not steady state and also not linear

We must be able to assess the need for a particular type of p yp
analysis and we must be able to perform it

Method of Finite Elements II
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M ti ti i d i ti f thMotivation, overview and organization of the course

• M ti ti• Motivation

What kind of problems are not steady state and linear?p y

E.g. when the:

material behaves non-linearly

deformations become big (p-Δ effects)

loads vary fast compared to the eigenfrequencies of the 
structure

General feature: Response becomes load path dependent

Method of Finite Elements II
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M ti ti i d i ti f thMotivation, overview and organization of the course

• M ti ti• Motivation

What is the „added value“ of being able to assess the non-linear „ g
non-steady state response of structures ?

E.g. assessing the;

- structural response of structures to extreme events (rock-fall,    
earthquake, hurricanes)

- performance (failures and deformations) of soils

- verifying simple models

Method of Finite Elements II
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M ti ti i d i ti f thMotivation, overview and organization of the course

St d t t bl (Li /N li )Steady state problems (Linear/Non-linear):

The response of the system does not change over time

Propagation problems (Linear/Non linear):

=KU R

Propagation problems (Linear/Non-linear):

The response of the system changes over time 
( ) ( ) ( ) ( )MU CU KU R&& &

Eigenvalue problems:

( ) ( ) ( ) ( )t t t t+ + =MU CU KU R

Eigenvalue problems:

No unique solution to the response of the system 

λ=Av Bv

Method of Finite Elements II

λ=Av Bv
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M ti ti i d i ti f thMotivation, overview and organization of the course

O i i• Organisation

The lectures will be given by:

M. H. Faber and N. Mojsilovic

Exercises will be organized/attended by:

K. Nishijima

Office hours: 14:00 16:00 on Thursdays HIL E22 3Office hours: 14:00 – 16:00 on Thursdays, HIL E22.3.

Method of Finite Elements II
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M ti ti i d i ti f thMotivation, overview and organization of the course

O i i• Organisation

PowerPoint files with the presentations will be up-loaded on our 
home-page one day in advance of the lectures

http://www.ibk.ethz.ch/fa/education/FE IIp _

The lecture as such will follow the book:The lecture as such will follow the book:

"Finite Element Procedures" by K J Bathe Prentice Hall 1996Finite Element Procedures  by K.J. Bathe, Prentice Hall, 1996

Method of Finite Elements II
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M ti ti i d i ti f thMotivation, overview and organization of the course

O i• Overview

Date  Subject(s)  Course book
Pages:Pages:

28.09.2007 Non-linear Finite Element Calculations in solids and structural 
mechanics 

• Introduction to non-linear calculations  
Th i t l h t ti h i

485-502  

• The incremental approach to continuum mechanics

05.10.2007 Non-linear Finite Element Calculations in solids and structural 
mechanics  
• Deformation gradients, strain and stress tensors  

502-528  

• The Langrangian formulation – only material non- 
     linearity  

12.10.2007 Non-linear Finite Element Calculations in solids and structural 
mechanics  

538-548  

• Displacement based iso-parametric finite elements    
     in continuum mechanics  

19.10.2007 Non-linear Finite Element Calculations in solids and structural 
mechanics  

548-560  

Method of Finite Elements II

• Displacement based iso-parametric finite elements  
     in continuum mechanics  
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M ti ti i d i ti f thMotivation, overview and organization of the course

O i• Overview

Date  Subject(s)  Course book
Pages:g

26.10.2007 Non-linear Finite Element Calculations in solids and structural 
mechanics 

• Total Langrangian formulation  
• Extended Langrangian formulation

561-578  

• Extended Langrangian formulation 
• Structural elements  

02.11.2007 Non-linear Finite Element Calculations in solids and structural 
mechanics  
• Introduction of constitutive relations

581-617  

• Introduction of constitutive relations  
• Non-linear constitutive relations  

09.11.2007 Non-linear Finite Element Calculations in solids and structural 
mechanics  

C t t bl

622-640  

• Contact problems 
• Practical considerations  

16.11.2007 Dynamical Finite Element Calculations  
• Introduction  

768-784  

Method of Finite Elements II

• Direct integration methods  
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M ti ti i d i ti f thMotivation, overview and organization of the course

O i• Overview

Date  Subject(s)  Course book
PPages:

23.11.2007 Dynamical Finite Element Calculations  
• Mode superposition  

785-800  

30 11 2007 Dynamical Finite Element Calculations 801 81530.11.2007 Dynamical Finite Element Calculations  
• Analysis of direct integration methods  

801-815 

07.12.2007 Dynamical Finite Element Calculations  
• Solution of dynamical non-linear problems

824-830  
 Solution of dynamical non linear problems 

14.12.2007 Solution of Eigen value problems  
• The vector iteration method  

887-910  

21.12.2007 Solution of Eigen value problems 911-93721.12.2007 Solution of Eigen value problems 
• The transformation method  

911 937 
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I t d ti t li l iIntroduction to non-linear analysis

P i l id d h l i f h f ll i li d• Previsously we considered the solution of the following linear and 
static problem:

=KU R

for these problems we have the convenient property of 
linearity, i.e: 

λ∗ =
⇓

KU R
If this is not the case we are dealing 

λ∗

⇓

=U U
with a non-linear problem!

Method of Finite Elements II
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I t d ti t li l iIntroduction to non-linear analysis

• P i l id d th l ti f th f ll i li d• Previsously we considered the solution of the following linear and 
static problem:

KU R

we assumed: 

=KU R

small displacements when developing the stiffness matrix K and 
the load vector R, because we performed all integrations over 
the original element volumethe original element volume 

that the B matrix is constant independent of element 
displacementsdisplacements

the stress-strain matrix C is constant

Method of Finite Elements II

boundary constriants are constant     
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I t d ti t li l iIntroduction to non-linear analysis
• Classification of non-linear analysis

Type of analysis Description Typical 
formulation used 

Stress and strain 
measures used 

Materially-nonlinear 
only 

Infinitesimal 
displacements and 
strains; stress train 

Materially-
nonlinear-only 
(MNO)

Engineering strain 
and stress 

;
relation is non-
linear 

( )

Large 
displacements, large 
rotations but small

Displacements and 
rotations of fibers 
are large; but fiber

Total Lagrange (TL) 
 

Second Piola-
Kirchoff stress, 
Green-Lagrangerotations but small 

strains 
are large; but fiber 
extensions and 
angle changes 
between fibers are 
small; stress strain 
relationship may be

 
 
Updated Lagrange 
(UL) 

Green Lagrange 
strain 
 
Cauchy stress, 
Almansi strain 

relationship may be 
linear or non-linear 

Large 
displacements, large 
rotations and large 
strains

Displacements and 
rotations of fibers 
are large; fiber 
extensions and

Total Lagrange (TL) 
 
 

Second Piola-
Kirchoff stress, 
Green-Lagrange 
strainstrains extensions and 

angle changes 
between fibers may 
also be large; stress 
strain relationship 
may be linear or

Updated Lagrange 
(UL) 

strain
 
Cauchy stress, 
Logarithmic strain 

Method of Finite Elements II

may be linear or 
non-linear 
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I t d ti t li l iIntroduction to non-linear analysis
• Classification of non-linear analysis

Δ
P

σ

2

1

E
L

/
/
P A
E

σ
ε σ

=
=

2
P ε0.04ε <

LεΔ =

L

Linear elastic (infinitesimal displacements)

Method of Finite Elements II
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I t d ti t li l iIntroduction to non-linear analysis
• Classification of non-linear analysis

Δ
P

σ

/P Aσ =

/P A

Eσ
2

L

/

Y Y

P A

E E

σ
σ σ σε

=
−= +

1

E
1 TEYσ

2
P ε0.04

TE E
ε <

1

L

Materially nonlinear only (infinitesimal 
di l t b t li t t i l ti )

Method of Finite Elements II

displacements, but nonlinear stress-strain relation)
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I t d ti t li l iIntroduction to non-linear analysis
• Classification of non-linear analysis

y

x

L 0.04ε ′ <

Large displacements and large rotations but 
ll t i (li li t i l b h i )

Lε′ ′Δ =

Method of Finite Elements II

small strains (linear or nonlinear material behavior)
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I t d ti t li l iIntroduction to non-linear analysis
• Classification of non-linear analysis

Large displacements and large rotations and 
l t i (li li t i l b h i )

Method of Finite Elements II

large strains (linear or nonlinear material behavior)
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I t d ti t li l iIntroduction to non-linear analysis
• Classification of non-linear analysis

2
P

2
P

Δ

Changing boundary conditions

Method of Finite Elements II
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I t d ti t li l iIntroduction to non-linear analysis
• Example: Simple bar structure 7 210 N / cmE =

t

ut2Area 1cm=
σ

Eσ

5 210 N / cm
: yield stress
: yield strain

T

Y

E
σ
ε

=

Section a Section b

10cmaL = 5cmaL =

tR

1

E
1 TEYσ : yield strainYε

ε
1

0.002ε =4

tR

1

2

3

2 4 6 t

Method of Finite Elements II



Swiss Federal Institute of 
Technology

Page 21

I t d ti t li l iIntroduction to non-linear analysis
• Example: Simple bar structure σ

7 2

5 2

10 N / cm
10 N / cm

: yield stress
T

Y

E
E
σ

=
=

t

ut2Area 1cm=

ε
1

E
1 TEYσ : yield strainYε

Section a Section b

10cmaL = 5cmaL =

tR ε
0.002ε =

3

4

tR

,
t t

t t
a b

u u
L L

ε ε= = −
1

2

2 4 6 t

a b
t t t

b a
t

L L

R A Aσ σ
σ

+ =

 (elastic region)

( l ti i )

t

t
t Y

E
σε

σ σε ε

=

−+ ( l di )σΔΔ

Method of Finite Elements II

(plastic region)t Y
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I t d ti t li l iIntroduction to non-linear analysis
• Example: Simple bar structure ,

t t
t t
a b

a b

u u
L L

ε ε= = −

t

ut2Area 1cm=
 (elastic region)

a b

t t t
b a

t
t

R A A

E

σ σ
σε

+ =

=

σ

1

E
1 TEYσ

7 2

5 2

10 N / cm
10 N / cm

: yield stress
: yield strain

T

Y

Y

E
E
σ
ε

=
=

Section a Section b

10cmaL = 5cmaL =

tR
(plastic region)

t
t Y

Y
T

E

E
σ σε ε −= +

Δ

ε
1

0.002ε =

2

3

4

tR

(unloading)
E
σε ΔΔ =1

2 4 6 t

6

1 1( )
3 10

t
t t t RR EA u u

L L
= + ⇒ =

Both sections elastic

6( )
3 10

2,
3 3

a b

t t

a b

L L

R R
A A

σ σ

−⋅

= = −

Method of Finite Elements II
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I t d ti t li l iIntroduction to non-linear analysis
• Example: Simple bar structure ,

t t
t t
a b

a b

u u
L L

ε ε= = −
σ

7 2

5 2

10 N / cm
10 N / cm

E
E

=
=

tR

ut2Area 1cm=

 (elastic region)

a b

t t t
b a

t
t

R A A

E

σ σ
σε

+ =

=
ε

σ

1

E
1 TEYσ

10 N / cm
: yield stress
: yield strain

T

Y

Y

E
σ
ε

=

Section a Section b

10cmaL = 5cmaL =
(plastic region)

t
t Y

Y
T

E

E
σ σε ε −= +

(unloading)σε ΔΔ =

ε
0.002ε =

1

2

3

4

tR

(unloading)
E

εΔ =
2 4 6 t

2section b will be plastic when t R Aσ
∗

=
Section a is elastic while section b is plastic

section b will be plastic when 
3 YR Aσ=

, ( )
t t

a b T Y Y
a b

u uE E
L L

σ σ ε σ= = − −
tt E AEA

2/ 1 9412 10

tt
t T

T Y Y
a b

t t
t T Y Y

E A uEA uR E A A
L L

R A E R

ε σ

ε σ

= + − + ⇒

+ −

Method of Finite Elements II

2
6

/ 1.9412 10
/ / 1.02 10

t T Y Y

a b

R A E Ru
E L E L

ε σ −+= = − ⋅
+ ⋅
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I t d ti t li l iIntroduction to non-linear analysis
• What did we learn from the example?

The basic problem in general nonlinear analysis is to find a state of 
equilibrium between externally applied loads and element nodal 
forces

We must achieve equilibrium0t t

t t t t

− =

= + +

R F

R R R R

We must achieve equilibrium 
for all time steps when 
incrementing the loading

B S C

t t
I

= + +

=

R R R R

F R

Very general approach

includes implicitly also dynamic

( )

( ) ( ) ( )

t m

I

t t m T t m t m

m V

dVτ=∑ ∫F B

p y y
analysis!

Method of Finite Elements II
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I t d ti t li l iIntroduction to non-linear analysis
• The basic approach in incremental anaylsis is

0t t t t+Δ +Δ− =R F
assuming that  is independent of the deformations we havet t

t t t

+Δ

+Δ = +
R

F F F

We know the solution tF at time t and F is the 
increment in the nodal point forces corresponding 
to an increment in the displacements and stresses 
from time t to time t+Δt this we can approximate by

t=F KU

T t tiff t i
t

t ∂ FK

Method of Finite Elements II

Tangent stiffness matrix t
t=

∂
K

U
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I t d ti t li l iIntroduction to non-linear analysis
• The basic approach in incremental anaylsis is

We may now substitute the tangent stiffness matrix into the 
equlibrium relation

t t t t+Δ= −
⇓

KU R F

t t t+Δ

⇓

= +U U U
hi h i h f th l l ti fwhich gives us a scheme for the calculation of 

the displacements

the exact displacements at time t+Δt correspondthe exact displacements at time t+Δt correspond 
to the applied loads at t+Δt however we only
determined these approximately as we used a tangent 
stiffness matrix – thus we may have to iterate to find the

Method of Finite Elements II

stiffness matrix – thus we may have to iterate to find the 
solution
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I t d ti t li l iIntroduction to non-linear analysis
• The basic approach in incremental anaylsis is

We may use the Newton-Raphson iteration scheme to find the 
equlibrium within each load increment

( 1) ( ) ( 1)t t i i t t t t i+Δ − +Δ +Δ −Δ = −K U R F (out of balance load vector)

( ) ( 1) ( )t t i t t i i+Δ +Δ −= + ΔU U U

(0) (0) (0)

with initial conditions
;    ;        t t t t t t t t t+Δ +Δ +Δ= = =U U K K F F; ;

Method of Finite Elements II
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I t d ti t li l iIntroduction to non-linear analysis
• The basic approach in incremental anaylsis is

It may be expensive to calculate the tangent stiffness 
matrix and;

in the Modified Newton-Raphson iteration scheme it is thus 
only calculated in the beginning of each new load step

in the quasi-Newton iteration schemes the secant 
stiffness matrix is used instead of the tangent matrix

Method of Finite Elements II
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Th ti h i i t l tiThe continuum mechanics incremental equations
• The basic problem:

We want to establish the solution using an incremental 
formulation

The equilibrium must be established for the considered body in 
ist current configurationg

In proceeding we adopt a Lagrangian formulation where track theIn proceeding we adopt a Lagrangian formulation where track the 
movement of all particles of the body (located in a Cartesian 
coordinate system)   

Another approach would be an Eulerian formulation where the 
motion of material through a stationary control volume is 
considered

Method of Finite Elements II

considered
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Th ti h i i t l tiThe continuum mechanics incremental equations
• The basic problem:

1uδ⎛ ⎞
⎜ ⎟

Configuration corresponding to variation in 
displacements  at t tδ +Δu u

1

2

3

u
u

δ δ
δ

⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

u

3x
Configuration at time 
Surface area 
Volume 

t t

t t

t t
S

V

+Δ

+Δ

+ Δ

Configuration at time 0

t

t

Configuration at time 
Surface area 
Volume 

t
S

V

2x

0

0

Surface area 
Volume 

S
V

0 t t+ t
1 1 1 1(or , , )x x x xΔ

Method of Finite Elements II

1 1 1 1( , , )
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Th ti h i i t l tiThe continuum mechanics incremental equations
• The Lagrangian formulation

C fi i i Δ

Configuration corresponding to variation in 
displacements  at t tδ +Δu u

1

2

3

u
u
u

δ
δ δ

δ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

u

We express equilibrium of the body 
at time t+Δt using the principle of 

3x

0

Configuration at time 0
Surface area S

t

t

Configuration at time 
Surface area 
Volume 

t
S

V

Configuration at time 
Surface area 
Volume 

t t

t t

t t
S

V

+Δ

+Δ

+ Δ

virtual displacements
0 t t+ t

1 1 1 1(or , , )x x x xΔ

2x
0

Surface area 
Volume 

S
V

t t

t t t t t t
t t ij

V

e d V Rτδ
+Δ

+Δ +Δ +Δ
+Δ =∫

:  Cartesian components of the Cauchy stress tensor
1 ( ) strain tensor corresponding to virtual displacements

t t

ji
t t ij

uue

τ
δδδ

+Δ

+Δ Δ Δ

∂∂= + =( ) strain tensor corresponding to virtual displacements
2

:  Components of virtua

t t ij t t t t
j i

i

e
x x

u

δ

δ

+Δ +Δ +Δ+
∂ ∂

l displacement vector imposed at time 

C t i di t t tit t

t t

t t+Δ

+ Δ

+ Δ:  Cartesian coordinate at time 

:  Volume at time 

t t
i

t t

t t t t B t t t t S S t t

x t t

V t t

R f u d V f u d Sδ δ

+Δ

+Δ

+Δ +Δ +Δ +Δ +Δ

+ Δ

+ Δ

= =∫ ∫
Method of Finite Elements II

t t t t
f

i i i i
V S

R f u d V f u d Sδ δ
+Δ +Δ

= =∫ ∫
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Th ti h i i t l tiThe continuum mechanics incremental equations
• The Lagrangian formulation

C fi i i Δ

Configuration corresponding to variation in 
displacements  at t tδ +Δu u

1

2

3

u
u
u

δ
δ δ

δ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

u

We express equilibrium of the body 
at time t+Δt using the principle of 

3x

0

Configuration at time 0
Surface area S

t

t

Configuration at time 
Surface area 
Volume 

t
S

V

Configuration at time 
Surface area 
Volume 

t t

t t

t t
S

V

+Δ

+Δ

+ Δ

virtual displacements
0 t t+ t

1 1 1 1(or , , )x x x xΔ

2x
0

Surface area 
Volume 

S
V

t t t t B t t t t S S t t
i i i iR f u d V f u d Sδ δ+Δ +Δ +Δ +Δ +Δ= =∫ ∫

where
: externally apllied forces per unit volume

t t t t
fV S

t t Bf

+Δ +Δ

+Δ

∫ ∫

:  externally apllied forces per unit volume

:  externally apllied surface tractions per unit surface

: surface at time

i
t t S

i

t t
f

f

f

S t t

+Δ

+Δ + Δ:  surface at time fS t t

uδ

+ Δ

:   evaluated at the surface S t t
i i fu Sδ +Δ

Method of Finite Elements II
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Th ti h i i t l tiThe continuum mechanics incremental equations
• The Lagrangian formulation

We recognize that our derivations from linear finite element theory 
are unchanged – but applied to the body in the configuration at 
time t+Δt

Method of Finite Elements II
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Th ti h i i t l tiThe continuum mechanics incremental equations
• In the further we introduce an appropriate notation:

0

0

Coordinates and displacements are related as:
t t
i i ix x u
Δ Δ

= +
0

Increments in displacements are related as:

t t t t
i i i

t t t

x x u

u u u

+Δ +Δ

+Δ

= +

=

0

Reference configurations are indexed as e.g.:
 where the lower

t i i i

t t S
i

u u u

f+Δ

= −

left index indicates the reference configuration0 if g
       

=t t t t
ij t t ijτ τ+Δ +Δ

+Δ

0
0

0 , ,0

Differentiation is indexed as:

,       
t t

t t i m
i j t t m n t t

u xu x
+Δ

+Δ
+Δ +Δ

∂ ∂= =
∂ ∂

Method of Finite Elements II

0 , ,0i j t t m n t t
j nx x+Δ +Δ∂ ∂


