Eidgenössische Technische Hochschule Zürich

Solution Methods for Eigenproblems

- eigenproblem: $K \varphi=\lambda M \varphi$
- solution methods:
- vector iteration method
- transformation methods
- polynomial iteration techniques
- Sturm sequence iteration method
- eigenproblem: $K \varphi=\lambda M \varphi$
- solution methods:
- vector iteration method
- inverse iteration
- forward iteration
- Rayleigh quotient iteration
- matrix deflation and Gram-Schmidt orthogonalisation
- transformation methods
- polynomial iteration techniques
- Sturm sequence iteration method

Shifting in Vector Iteration

- How to improve the convergence rate?
\rightarrow shifting

$$
\left.\begin{array}{l}
(K-\mu M) \varphi=\eta M \varphi \\
K \varphi=\lambda M \varphi
\end{array}\right\} \begin{aligned}
& \text { relation of eigenvalues: } \\
& \eta_{i}=\lambda_{i}-\mu, i=1 \ldots . . n
\end{aligned}
$$

Shifting in Vector Iteration

- Convergence properties:
- problem in the basis of eigenvectors Φ
using the transformation $\varphi=\Phi \Psi$
we obtain the equivalent eigenproblem $(\Lambda-\mu I) \Psi=\eta \Psi$

Shifting in Vector Iteration

- Convergence properties: inverse iteration
iteration vector: $\quad z_{l+1}^{T}=\left[\begin{array}{llll}\frac{1}{\left(\lambda_{1}-\mu\right)^{l}} & \frac{1}{\left(\lambda_{2}-\mu\right)^{l}} & \cdots & \frac{1}{\left(\lambda_{n}-\mu\right)^{l}}\end{array}\right]$
multiplication with $\lambda_{i}-\mu, i=j$:

$$
\bar{z}_{l+1}^{T}=\left[\left(\frac{\lambda_{j}-\mu}{\lambda_{1}-\mu}\right)^{l} \ldots\left(\frac{\lambda_{j}-\mu}{\lambda_{j-1}-\mu}\right)^{l} 1\left(\frac{\lambda_{j}-\mu}{\lambda_{j+1}-\mu}\right)^{l} \ldots\left(\frac{\lambda_{j}-\mu}{\lambda_{n}-\mu}\right)^{l}\right]
$$

Shifting in Vector Iteration

- Convergence properties: inverse iteration
- in the iteration we have $\vec{z}_{l+1} \rightarrow e_{j}$
- meaning that to solve the eigenproblem the iteration vector converges to Φ_{j}
- furthermore: $\lambda_{i}=\eta_{j}+\mu$
- convergence rate: $\quad r=\max _{p \neq j}\left|\frac{\lambda_{j}-\mu}{\lambda_{p}-\mu}\right|$

Shifting in Vector Iteration

- Convergence properties: inverse iteration
- convergence rate: $r=\max _{p \neq j}\left|\frac{\lambda_{j}-\mu}{\lambda_{p}-\mu}\right|$
- since λ_{j} is nearest $\mu \rightarrow\left|\frac{\lambda_{j}-\mu}{\lambda_{j-1}-\mu}\right|$ or $\left|\frac{\lambda_{j}-\mu}{\lambda_{j+1}-\mu}\right|$

Shifting in Vector Iteration

- Convergence properties: inverse iteration
- convergence rate of the Rayleigh coefficient:

$$
\left|\frac{\lambda_{j}-\mu}{\lambda_{j-1}-\mu}\right|^{2} \quad \text { or } \quad\left|\frac{\lambda_{j}-\mu}{\lambda_{j+1}-\mu}\right|^{2}
$$

Shifting in Vector Iteration

- Convergence properties: forward iteration
- convergence rate: $r=\max _{p \neq j}\left|\frac{\lambda_{p}-\mu}{\lambda_{j}-\mu}\right|$
\rightarrow limited convergence rate in forward iteration
\rightarrow by means of shifting convergence only to $\left(\lambda_{n}, \varphi_{n}\right)$ or $\left(\lambda_{1}, \varphi_{1}\right)$
\rightarrow to achieve highest convergence rates in both we need to choose

$$
\mu=\left(\lambda_{1}+\lambda_{n-1}\right) / 2 \text { resp. } \mu=\left(\lambda_{2}+\lambda_{n}\right) / 2
$$

Shifting in Vector Iteration

- Convergence properties: forward iteration
- corresponding convergence rates:

$$
\left|\begin{array}{l}
\lambda_{n-1}-\frac{\lambda_{1}+\lambda_{n}}{2} \\
\lambda_{n}-\frac{\lambda_{1}+\lambda_{n-1}}{2} \\
\lambda_{2}-\frac{\lambda_{2}+\lambda_{n}}{2} \\
\lambda_{1}-\frac{\lambda_{2}+\lambda_{n}}{2}
\end{array}\right|
$$

- much higher convergence rate with shifting in inverse iteration

Rayleigh Quotient Iteration

- Improving of convergence rate in inverse iteration by
shifting \rightarrow but how to choose the appropiate shift?
- one possibility: Rayleigh quotient as shhift value

Rayleigh Quotient Iteration

- we assume a starting iteration vector x_{1}, hence $\mathrm{y}_{1}=\mathrm{M} \mathrm{x}_{1}$, a starting shift $p\left(\bar{x}_{1}\right)$ (usually 0) and then evaluate for $k=1,2, \ldots$:

$$
\begin{aligned}
{\left[\mathbf{K}-\rho\left(\overline{\mathbf{x}}_{k}\right) \mathbf{M}\right] \overline{\mathbf{x}}_{k+1} } & =\mathbf{y}_{k} \\
\overline{\mathbf{y}}_{k+1} & =\mathbf{M} \overline{\mathbf{x}}_{k+1} \\
\rho\left(\overline{\mathbf{x}}_{k+1}\right) & =\frac{\overline{\mathbf{x}}_{k+1}^{T} \mathbf{y}_{k}}{\overline{\mathbf{x}}_{k+1}^{T} \overline{\mathbf{y}}_{k+1}}+\rho\left(\overline{\mathbf{x}}_{k}\right) \\
\mathbf{y}_{k+1} & =\frac{\overline{\mathbf{y}}_{k+1}}{\left(\overline{\mathbf{x}}_{k+1}^{T} \overline{\mathbf{y}}_{k+1}\right)^{1 / 2}}
\end{aligned}
$$

$$
\text { where now } \mathbf{y}_{k+1} \rightarrow \mathbf{M} \boldsymbol{\phi}_{i} \text { and } \rho\left(\overline{\mathbf{x}}_{k+1}\right) \rightarrow \lambda_{i} \quad \text { as } k \rightarrow \infty
$$

- eigenvalue λ_{i} and corr. eigenvector φ_{i} to which the iteration converges depend on starting iteration vector x_{1} and initial shift $p\left(\bar{x}_{1}\right)$

Matrix Deflation

- inverse iteration converges to λ_{1} and φ_{1}, forward iteration to λ_{n} and φ_{n}
- methods can also employed with shifting to calculate other eigenvalues and corresponding eigenvectors
- assuming that we have calculated a specific eigenpair $\left(\lambda_{k}, \varphi_{k}\right)$ and that we require the solution of another eigenpair
- to ensure that we do not coverge again to λ_{k} and φ_{k} we need to deflate either the matrices or the iteration vectors

Matrix Deflation

- standard eigenproblem: $K \varphi=\lambda \varphi$
- stable matrix deflation can be carried out by finding an orthogonal matrix \mathbf{P} whose first column is the calculated eigenvector φ_{k}
writing $\quad \mathbf{P}=\left[\boldsymbol{\phi}_{k}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n}\right]$
we need to have $\boldsymbol{\phi}_{k}^{T} \mathbf{p}_{i}=0$ for $i=2, \ldots, n$.
It then follows $\quad \mathbf{P}^{T} \mathbf{K} \mathbf{P}=\left[\begin{array}{cc}\boldsymbol{\lambda}_{\boldsymbol{k}} & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_{1}\end{array}\right]$
$\mathbf{P}^{\top} K \mathbf{P}$ has the same eigenvalues as \mathbf{K}, and therefore \mathbf{K}_{1} must have all eigenvalues of K except λ_{k}

Gram-Schmidt Orthogonalisation

- other possibility: deflation of iteration vector
\rightarrow basis: the iteration vector must not be orthogonal the required eigenvector
\rightarrow conversely, if the iteration vector is orthogonalised to the eigenvectors allready calculated, convergence to these eigenvectors is eliminated
\rightarrow Gram-Schmidt method

Gram-Schmidt Orthogonalisation

eigenproblem: $K \varphi=\lambda M \varphi$
assuming that we have calculated the eigenvectors $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{\mathrm{m}}$ and that we want to \mathbf{M}-orthogonalise x_{1} to these eigenvectors

$$
\tilde{\mathbf{x}}_{1}=\mathbf{x}_{1}-\sum_{i=1}^{m} \alpha_{i} \boldsymbol{\phi}_{i}
$$

we obtain for the coefficients α_{i}

$$
\alpha_{i}=\phi_{i}^{T} \mathbf{M} \mathbf{x}_{1} ; \quad i=1, \ldots, m
$$

in inverse iteration \widetilde{x}_{1} is now the starting iteration vector instead of x_{1}

Example 11.4, p. 898

eigenproblem: $K \varphi=\lambda M \varphi \quad$ tol $=10^{-6}$
evaluating λ_{4} and φ_{4} using forward iteration

$$
\mathbf{K}=\left[\begin{array}{rrrr}
5 & -4 & 1 & 0 \\
-4 & 6 & -4 & 1 \\
1 & -4 & 6 & -4 \\
0 & 1 & -4 & 5
\end{array}\right] ; \quad \mathbf{M}=\left[\begin{array}{llll}
2 & & & \\
& 2 & & \\
& & 1 & \\
& & & 1
\end{array}\right]
$$

starting iteration vector:

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Example 11.4, p. 898

k	$\overline{\mathbf{x}}_{k+1}$	$\overline{\mathbf{y}}_{k+1}$	$\rho\left(\overline{\mathbf{x}}_{\text {k }}\right)$	\mathbf{y}_{k+1}	$\frac{\left\|\lambda_{4}^{(k+1)}-\lambda_{4}^{(k)}\right\|}{\lambda_{4}^{(k+1)}}$
1	1	6	5.93333	2.1909	-
	-0.5	-1		-0.3651	
	-1	-11		-4.0166	
	2	13.5		4.9295	
2	1.0954	2.1909	8.57887	0.3345	0.3084
	-0.1826	15.5188		2.3694	
	-4.0166	-41.9921		-6.4112	
	4.9295	40.5315		6.1882	
3	0.1672	-10.3137	10.15966	-1.1372	0.1556
	1.1847	38.2720		4.2198	
	-6.4112	-67.7914		-7.4745	
	6.1882	57.7704		6.3696	
8	-1.1285	-24.2083	10.63838	-2.2756	0.00003304
	2.7044	57.7298		5.4267	
	-7.7481	-82.4222		-7.7478	
	5.9969	63.6811		5.9861	
9	-1.1378	-24.2902	10.63844	-2.2833	0.000005584
	2.7133	57.8086		5.4340	
	-7.7478	-82.4224		-7.7476	
	5.9861	63.6351		5.9816	
10	-1.1416	-24.3237	10.63845	-2.2864	0.0000009437
	2.7170	57.8405		5.4369	
	-7.7476	-82.4219		-7.7476	
	5.9816	63.6157		5.9798	

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Example 11.4, p. 898

$$
\begin{array}{ll}
\lambda_{n} \doteq \rho\left(\overline{\mathbf{x}}_{l+1}\right) & \boldsymbol{\phi}_{n} \doteq \frac{\overline{\mathbf{x}}_{l+1}}{\left(\overline{\mathbf{x}}_{l+1} \mathbf{y}_{i}\right)^{1 / 2}} \\
\lambda_{4} \doteq 10.63845 ; & \boldsymbol{\phi}_{4} \doteq\left[\begin{array}{r}
-0.10731 \\
0.05539 \\
-0.72827 \\
0.56227
\end{array}\right]
\end{array}
$$

Example 11.5, p. 901

eigenproblem: $K \varphi=\lambda M \varphi \quad$ tol $=10^{-6}$
evaluating λ_{1} and φ_{1} using inverse iteration
after 3 iterations we get:

$$
\lambda_{1} \doteq 0.09654 ; \quad \boldsymbol{\phi}_{1} \doteq\left[\begin{array}{c}
0.3126 \\
0.4955 \\
0.4791 \\
0.2898
\end{array}\right]
$$

Example 11.5, p. 901

Now imposing a shift of $\mu=10$, we obtain:

$$
\mathbf{K}-\mu \mathbf{M}=\left[\begin{array}{rrrr}
-15 & -4 & 1 & 0 \\
-4 & -14 & -4 & 1 \\
1 & -4 & -4 & -4 \\
0 & 1 & -4 & -5
\end{array}\right]
$$

Example 11.5, p. 901

Using inverse iteration on the problem $(\mathbf{K}-\mu \mathbf{M}) \varphi=\eta \mathbf{M} \varphi$, we obtain convergence after 6 iterations with

$$
\rho\left(\overline{\mathbf{x}}_{7}\right)=0.6385 ; \quad \mathbf{x}_{7}=\left[\begin{array}{r}
-0.1076 \\
0.2556 \\
-0.7283 \\
0.5620
\end{array}\right]
$$

Example 11.5, p. 901

Using the shift, we know that $\mu+p\left(\bar{x}_{7}\right)$ is an approximation to an eigenvalue and x_{7} is an approximation to the corresponding eigenvector

Comparing with the reults from 11.4, we find

$$
\lambda_{4} \doteq \mu+\rho\left(\mathbf{x}_{7}\right) \doteq 10.6385 ; \quad \phi_{4} \doteq \mathbf{x}_{7}
$$

Example 11.8, p. 908

Now we want to calculate an appropriate starting iteration vector, using Gram-
Schmidt orthogonalisation:

$$
\begin{aligned}
& \tilde{\mathbf{x}}_{1}=\mathbf{x}_{1}-\sum_{i=1}^{m} \alpha_{i} \phi_{i} \square \tilde{\mathbf{x}}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\alpha_{1} \phi_{1}-\alpha_{4} \phi_{4} \\
& \alpha_{i}=\phi_{i}^{T} \mathbf{M} \mathbf{x}_{1} \quad \square \quad \alpha_{1}=\boldsymbol{\phi}_{1}^{T} \mathbf{M} \mathbf{x}_{1} \\
& \alpha_{4}=\boldsymbol{\phi}_{4}^{T} \mathbf{M} \mathbf{x}_{1}
\end{aligned}
$$

Example 11.8, p. 908

Substituting for \mathbf{M}, φ_{1} and φ_{4} leads to:

$$
\begin{aligned}
& \alpha_{1}=2.385 \\
& \alpha_{4}=0.1299
\end{aligned}
$$

and

$$
\tilde{\mathbf{x}}_{1}=\left[\begin{array}{c}
0.2683 \\
-0.2149 \\
-0.04812 \\
0.2358
\end{array}\right]
$$

