

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

Page 1

Prof. Dr. Michael Havbro Faber Dr. Nebojša Mojsilović Swiss Federal Institute of Technology ETH Zurich, Switzerland

Contents of Today's Lecture

- Solution methods for eigenproblems
- $\mathbf{K}\boldsymbol{\phi} = \lambda \mathbf{M}\boldsymbol{\phi}$

- Vector iteration methods
- Transformation methods
- Polynomial iteration techniques
- Sturm sequence property of the characteristic polynomial

Solution methods for eigenproblems

- All solution methods are iterative since we are calculating the roots of the polynomial p(λ), which has order of K and M
- There are no implicit formulas when the order of p is higher than 4
- Iteration is needed in solution of an eigenpair (λ_i,φ_i); knowing one of them the other one can be obtained without further iteration
- If λ_i solved by iteration, than $(\mathbf{K} \lambda_i \mathbf{M}) \mathbf{\Phi}_i = \mathbf{0}$
- If ϕ_i solved by iteration, than $\lambda_i = \phi_i^T \mathbf{K} \phi_i; \quad \phi_i^T \mathbf{M} \phi_i = 1$

Effectiveness of a solution method

- Depends on two factors
- Firstly, on the possibility of a reliable use of the procedure, i.e. for well defined K and M matrices the solution is always obtained to the required precision without solution break-down
- Secondly, on the solution cost

Vector iteration methods

- Problem to solve: $\mathbf{K}\boldsymbol{\phi} = \lambda \mathbf{M}\boldsymbol{\phi}$
- Assuming \mathbf{x}_1 for ϕ and setting λ =1 we obtain $\mathbf{R}_1 = (1)\mathbf{M}\mathbf{x}_1$
- Now we can use the equilibrium equation

$$\mathbf{K}\mathbf{x}_2 = \mathbf{R}_1; \qquad \mathbf{x}_2 \neq \mathbf{x}_1$$

 We obtain x₂ which can be now used as better approximation for x₁; in this way we are getting an increasingly better approximation for an eigenvector.

Vector iteration methods

- Inverse iteration
- Forward iteration
- Rayleigh quotient iteration
- Matrix deflation and Gram-Schmidt orthogonalisation

Inverse iteration

- Used to calculate an eigenvector (and later corresponding eigenvalue)
- Firstly, we assume starting vector \mathbf{x}_1 and thus in iteration step k we have $\mathbf{K}\overline{\mathbf{x}}_{k+1} = \mathbf{M}\mathbf{x}_k$

$$\mathbf{x}_{k+1} = \frac{\overline{\mathbf{x}}_{k+1}}{(\overline{\mathbf{x}}_{k+1}^T \mathbf{M} \overline{\mathbf{x}}_{k+1})^{1/2}}$$

 Providing that K is positive definite (all eigenvalues are positive) and x₁ is not M-orthogonal to φ₁ we have

$$\mathbf{x}_{k+1} \to \mathbf{\phi}_1 \qquad \text{as } k \to \infty$$

Forward iteration

- Complementary to inverse iteration, as yielding the eigenvector corresponding to the largest eigenvalue
- Firstly, we assume starting vector x₁ and thus in iteration step k we have

$$\mathbf{M}\,\overline{\mathbf{x}}_{k+1} = \mathbf{K}\mathbf{x}_k$$
$$\mathbf{x}_{k+1} = \frac{\overline{\mathbf{x}}_{k+1}}{(\overline{\mathbf{x}}_{k+1}^T \mathbf{M}\,\overline{\mathbf{x}}_{k+1})^{1/2}}$$

• Providing that M is positive definite and x_1 is not M-orthogonal to ϕ_1 we have

$$\mathbf{x}_{k+1} \to \mathbf{\phi}_n \qquad \text{as } k \to \infty$$

Convergence of the inverse and forward iteration

- The convergence of both procedures can be proved
- Convergence rate can be improved by shifting, see also Ch. 10.2.3 (we perform a shift ρ on K matrix in order to accelerate the calculations of the required eigensystem)
- Additionally, a shift can be used to obtain convergence in inverse iteration procedure when K is positive semi definite (all eigenvalues are greater or equal zero) and in forward iteration procedure when M is diagonal with some zero diagonal elements