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Contents of Today's Lecture

Solution methods for eigenproblems

Kd = AMd

Vector iteration methods

Transformation methods

1
Polynomial iteration techniques

® Sturm sequence property of the characteristic polynomial
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Solution methods for eigenproblems

All solution methods are iterative since we are calculating the roots
of the polynomial p(A), which has order of K and M

There are no implicit formulas when the order of p is higher than 4

Iteration is needed in solution of an eigenpair (A;,9;); knowing one of
them the other one can be obtained without further iteration

Ifl
If A; solved by iteration, than (K — AM)d; = 0 T

If ¢, solved by iteration, than A, = &TKd;; & Md; = 1 i
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Effectiveness of a solution method

Depends on two factors

Firstly, on the possibility of a reliable use of the procedure, i.e. for
well defined K and M matrices the solution is always obtained to
the required precision without solution break-down

u’.:
Secondly, on the solution cost
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Vector iteration methods

* Problemtosolve: Kd¢ = AMd

°* Assuming x, for ¢ and setting A=1 we obtain R, = (I)Mxl

* Now we can use the equilibrium equation
Kx, = Ry; X2 F X I
T
* We obtain x, which can be now used as better approximation i
for x,; in this way we are getting an increasingly better i
approximation for an eigenvector. t
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Vector iteration methods

®* |nverse iteration

®* Forward iteration
Rayleigh quotient iteration

Matrix deflation and Gram-Schmidt orthogonalisation
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® Used to calculate an eigenvector (and later corresponding
eigenvalue)
* Firstly, we assume starting vector x; and thus in iteration step k we
have KX, = Mx,
X — Xi+1 I
* Providing that K is positive definite (all eigenvalues are positive) i
and x, is not M-orthogonal to ¢, we have i
1]
||
Xp+1 —> by as k — -
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Forward iteration
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* Complementary to inverse iteration, as yielding the eigenvector
corresponding to the largest eigenvalue
* Firstly, we assume starting vector x; and thus in iteration step k we
have
MX;+1 = Kx,
— |11}
orr = Xk
k+1 = e — i
' Xt MXpi1)'/? !ﬂ
if
1]
* Providing that M is positive definite and x, is not M-orthogonal ﬁ
to ¢, we have i
Xir1 —> P as Kk —> @ I
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Convergence of the inverse and forward iteration
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* The convergence of both procedures can be proved

Convergence rate can be improved by shifting, see also Ch. 10.2.3
(we perform a shift p on K matrix in order to accelerate the
calculations of the required eigensystem)

Additionally, a shift can be used to obtain convergence in I
inverse iteration procedure when K is positive semi definite (all i
eigenvalues are greater or equal zero) and in forward iteration

procedure when M is diagonal with some zero diagonal ii
elements i
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