Method of Finite Elements II:

Examples 6.14 and 6.15.

Natalie Germann

Prof. M. H. Faber, Chair of Risk and Safety, Institute of Structural Engineering, ETH Zurich.

Non-linear analysis

Table 1 Classification of non-linear analysis in solid and structural mechanics (taken from Bathe [1996]).

Type of analysis	Description	Typical formulation used	Stress and strain measures
Materially- nonlinear-only	Infinitesimal displace- ments and strains; the stress-strain relation is nonlinear	Materially-nonlinear -only (MNO)	Engineering stress and strain
Large displace- ments, large rotations, but small strains	Displacements and rotations of fibers are large, but fiber extensions and angle changes between fibers are small; the stress-strain relation may be linear or nonlinear	Total Lagrangian (TL) Updated Lagrangian (UL)	Second Piola-Kirchhoff stress, Green-Lagrange strain Cauchy stress, Almansi strain
Large displace- ments, large rotations, and large strains	Fiber extensions and angle changes between fibers are large, fiber displacements and rotations may also be large; the stress-strain relation may be linear or nonlinear	Total Lagrangian (TL) Updated Lagrangian (UL)	Second Piola-Kirchhoff stress, Green-Lagrange strain Cauchy stress, logarithmic strain

Kinematic description

1. Total Lagrangian (TL) formulation:

$$\int_{0V} {t+\Delta t \atop 0} S_{ij} \delta^{t+\Delta t} {e_{ij} \atop 0} d^0 V = {t+\Delta t \atop 0} R .$$

$$\tag{1}$$

2. Updated Lagrangian (UL) formulation:

$$\int_{t_V} {}^{t+\Delta t}_t S_{ij} \delta^{t+\Delta t}_t e_{ij} d^t V = {}^{t+\Delta t} R .$$
(2)

Kinematic variables

- 1. Stress measures:
 - Cauchy stress tensor ${}^t \boldsymbol{\tau}$
 - Second Piola-Kirchhoff stress tensor:

$${}_{0}^{t}\mathbf{S} = \frac{{}^{0}\rho}{{}^{t}\rho}{}^{0}{}_{t}\mathbf{X}^{t}\boldsymbol{\tau}{}^{0}{}_{t}\mathbf{X}^{\mathsf{T}}.$$
(3)

- 2. Strain measures:
 - Almansi strain tensor:

$${}_{0}^{t}\mathbf{A} = \frac{1}{2} \left(\mathbf{1} - \left({}_{0}^{t}\mathbf{X} {}_{0}^{t}\mathbf{X}^{\mathsf{T}} \right)^{-1} \right) \,. \tag{4}$$

• Green-Lagrange strain tensor:

$${}_{0}^{t}\mathbf{E} = \frac{1}{2} \left({}_{0}^{t}\mathbf{X}^{\mathsf{T}} {}_{0}^{t}\mathbf{X} - \mathbf{1} \right) \,. \tag{5}$$

Example 6.14

Show: Components of second Piola-Kirchhoff stress tensor are invariant under rigid body rotation of material.

Example 6.15

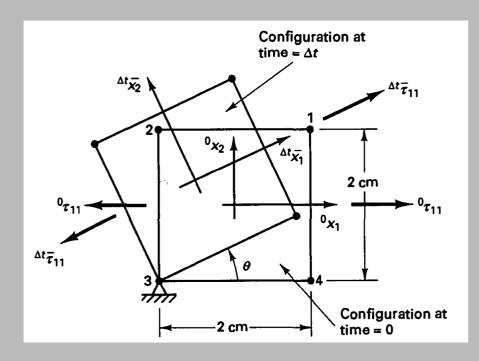


Fig. 1 Four-node element with initial stress subjected to rotation (from Bathe [1996]).

Given: Four-node element with initial stress τ_{11} at time t = 0 is subjected to rigid body rotation from time t = 0 to time $t = \Delta t$ through angle θ .

Show: Components of second Piola-Kirchhoff stress tensor did not change as a result of rigid body rotation.