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Method of Finite Elements II

Contents of Today's Lecture

• Short summary of the main findings from the last lecture 

• Aim of the present lecture – in short ☺

• The deformation gradient, strain and stress tensors

• Continuum mechanics formulations
- incremental total Lagrangian
- incremental updated Lagrangian
- materially non-linear analysis only
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Short summary of the last lecture 
• The basic approach in incremental anaylsis is

0
assuming that  is independent of the deformations we have

t t t t

t t

t t t

+Δ +Δ

+Δ

+Δ

− =

= +

R F
R

F F F

We know the solution tF at time t and F is the 
increment in the nodal point forces corresponding 
to an increment in the displacements and stresses 
from time t to time t+Δt . This we can approximate by:

t=F KU

Tangent stiffness matrix
t

t
t

∂
=
∂

FK
U
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Short summary of the last lecture 
• The basic approach in incremental anaylsis is

We may now substitute the tangent stiffness matrix into the 
equlibrium relation

t t t t

t t t

+Δ

+Δ

= −

⇓

= +

KU R F

U U U
which gives us a scheme for the calculation of 
the displacements

The exact displacements at time t+Δt correspond 
to the applied loads at t+Δt, however, we only
determined these approximately as we used a tangent 
stiffness matrix – thus we may have to iterate to find the 
solution
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Short summary of the last lecture 
• The basic approach in incremental anaylsis is

We may use the Newton-Raphson iteration scheme to find the 
equlibrium within each load increment:

( 1) ( ) ( 1)

( ) ( 1) ( )

(0) (0) (0)

with initial conditions
;    ;        

t t i i t t t t i

t t i t t i i

t t t t t t t t t

+Δ − +Δ +Δ −

+Δ +Δ −

+Δ +Δ +Δ

Δ = −

= + Δ

= = =

K U R F

U U U

U U K K F F

(out of balance load vector)
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Short summary of the last lecture 
• The basic approach in incremental anaylsis is

It may be expensive to calculate the tangent stiffness 
matrix and;

In the Modified Newton-Raphson iteration scheme it is thus 
only calculated in the beginning of each new load step

In the Quasi-Newton iteration schemes the secant 
stiffness matrix is used instead of the tangent matrix
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Short summary of the last lecture 
• The basic problem:

We want to establish the solution to a non-linear mechanical 
problem using an incremental formulation

The equilibrium must be established for the considered body in 
its current configuration

In proceeding we adopt a Lagrangian formulation where we 
track the movement of all particles of the body (located in a 
Cartesian coordinate system)   

Another approach would be an Eulerian formulation where the 
motion of material through a stationary control volume is 
considered
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Short summary of the last lecture 
• The basic problem:

0 t t+ t
1 1 1 1(or , , )x x x xΔ

2x

3x

0

0

Configuration at time 0
Surface area 
Volume 

S
V

t

t

Configuration at time 
Surface area 
Volume 

t
S

V

Configuration at time 
Surface area 
Volume 

t t

t t

t t
S

V

+Δ

+Δ

+ Δ

Configuration corresponding to variation in 
displacements  at t tδ +Δu u

1

2

3

u
u
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δ
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Short summary of the last lecture 
• The Lagrangian formulation

We express equilibrium of the body 
at time t+Δt using the principle of 
virtual displacements

:  Cartesian components of the Cauchy stress tensor
1 ( ) strain tensor corresponding to virtual displacements
2

:  Components of virtua

t t

t t t t t t
t t ij

V

t t

ji
t t ij t t t t

j i

i

e d V R

uue
x x

u

τδ

τ
δδδ

δ

+Δ

+Δ +Δ +Δ
+Δ

+Δ

+Δ +Δ +Δ

=

∂∂
= + =

∂ ∂

∫

l displacement vector imposed at time 

:  Cartesian coordinate at time 

:  Volume at time 

t t t t
f

t t
i

t t

t t t t B t t t t S S t t
i i i i

V S

t t

x t t

V t t

R f u d V f u d Sδ δ
+Δ +Δ

+Δ

+Δ

+Δ +Δ +Δ +Δ +Δ

+ Δ

+ Δ

+ Δ

= +∫ ∫
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Short summary of the last lecture 
• The Lagrangian formulation

We express equilibrium of the body 
at time t+Δt using the principle of 
virtual displacements

where
:  externally apllied forces per unit volume

:  externally apllied surface tractions per unit surface

:  surface at time 

t t t t
f

t t t t B t t t t S S t t
i i i i

V S

t t B
i

t t S
i

t t
f

R f u d V f u d S

f

f

S t t

u

δ δ

δ

+Δ +Δ

+Δ +Δ +Δ +Δ +Δ

+Δ

+Δ

+Δ

= +

+ Δ

∫ ∫

:   evaluated at the surface S t t
i i fu Sδ +Δ
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Short summary of the last lecture 
• The Lagrangian formulation

We recognize that our derivations from linear finite element theory 
are unchanged – but applied to the body in the configuration at 
time t+Δt
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Short summary of the last lecture 
• In the further we introduce an appropriate notation:

0

0

0

Coordinates and displacements are related as:

Increments in displacements are related as:
 

Reference configurations are indexed as e.g.:
 where the lower

t t
i i i

t t t t
i i i

t t t
t i i i

t t S
i

x x u

x x u

u u u

f

+Δ +Δ

+Δ

+Δ

= +

= +

= −

0
0

0 , ,0

 left index indicates the reference configuration
       

=

Differentiation is indexed as:

,       

t t t t
ij t t ij

t t
t t i m

i j t t m n t t
j n

u xu x
x x

τ τ+Δ +Δ
+Δ

+Δ
+Δ

+Δ +Δ

∂ ∂
= =

∂ ∂
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Aim of the present lecture
• We have already formulated the continuum mechanich incremental 

equations of motion

and

a basic problem is that we dont know the configuration at 
time t+Δt (in linear analysis we always used the original 
configuration as basis)

what we need to do now is to introduce appropriate stress and 
strain measures as well as constitutive relations

t t

t t t t t t
t t ij

V

e d V Rτδ
+Δ

+Δ +Δ +Δ
+Δ =∫

t t t t
f

t t t t B t t t t S S t t
i i i i

V S

R f u d V f u d Sδ δ
+Δ +Δ

+Δ +Δ +Δ +Δ +Δ= +∫ ∫
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The deformation gradient, strain and stress tensors
• As mentioned – we must try to establish a description of the 

volume we consider such that we can express the internal virtual 
work in terms of an integral over a volume we know!

• Further we would like to be able to decompose the stresses and 
strains in an efficient manner – keeping track of how the volume 
stretches and how it rotates (rigidly).
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The deformation gradient, strain and stress tensors

0 x

tx

u

O
0t= −u x x

We consider a body under deformation at times 0 and t

0t =

t
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The deformation gradient, strain and stress tensors

0 x

txO
0 0 0( , ) ( , )t t td d t t= + −x x x x x x

0t =

t

We now consider the change of an infinitesimal gradient vector

0d x

td x

The we can write
which is linear in the gradient why we have

0
0

t td d=x X x

0
tX
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The deformation gradient, strain and stress tensors
• We can write the deformation gradient as

1 1 1
0 0 0

1 2 3

2 2 2
0 0 0 0

1 2 3

3 3 3
0 0 0

1 2 3

0
1

0 0 0 1 2 30
2

0
3

( ) ,  where    ;      and     

it can be show

t t t

t t t
t

t t t

t t T T t T t t t

x x x
x x x

x x x
x x x

x x x
x x x

x

x x x
x

x

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

= ⎢ ⎥
∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ⎡ ⎤= ∇ ∇ = =⎢ ⎥ ⎣ ⎦∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥
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X

X x x

( ) ( )
010

0 0
 that    and   

det
t t

t
t

ρρ
−

= =X X
X

The deformation gradient describes the 
stretches and rotations that the material 
fibers have undergone from time zero to 
time t
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The deformation gradient, strain and stress tensors
• Then we introduce the Cauchy-Green deformation tensor

1 1 1
0 0 0

1 2 3

2 2 2
0 0 0 0

1 2 3

3 3 3
0 0 0

1 2 3

0
1

0 0 0 1 2 30
2

0
3

( ) ,  where    ;      and     

t t t

t t t
t

t t t

t t T T t T t t t

x x x
x x x

x x x
x x x

x x x
x x x

x

x x x
x

x

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

= ⎢ ⎥
∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ⎡ ⎤= ∇ ∇ = =⎢ ⎥ ⎣ ⎦∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥
∂⎣ ⎦

X

X x x

The deformation gradient is also 
used to measure the stretch of a 
material fiber and the change in 
angle between fibers due to the 
deformation

0 0 0
t t T t=C X X “Right Cauchy-Green 

deformation tensor“

0 0 0
t t t T=B X X “Left Cauchy-Green 

deformation tensor“



Swiss Federal Institute of 
Technology

Page 19

Method of Finite Elements II

The deformation gradient, strain and stress tensors
• The deformation gradient

1 1 1
0 0 0

1 2 3

2 2 2
0 0 0 0

1 2 3

3 3 3
0 0 0

1 2 3

0
1

0 0 0 1 2 30
2

0
3

( ) ,  where    ;      and     

t t t

t t t
t

t t t

t t T T t T t t t

x x x
x x x

x x x
x x x

x x x
x x x

x

x x x
x

x

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

= ⎢ ⎥
∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ⎡ ⎤= ∇ ∇ = =⎢ ⎥ ⎣ ⎦∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥
∂⎣ ⎦

X

X x x

The deformation gradient can be
decomposed into a unique product 
of two matrices 

0
tU Symmetric stretch matrix

0 0 0
t t t=X R U

0
tR Orthogonal rotation matrix

Referred to as a polar decomposition (illustrated in Ex 6.8)

Sometimes the indexes referring to time are omitted!
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The deformation gradient, strain and stress tensors
• Decomposition of the deformation gradient

We continue by rewriting the 
deformation gradient

T= = =X RU RUR R VR

U: right stretch matrix
V: left stretch matrix

Further it can be shown (Ex 6.8) that :

:    Principal stretches
:  Direction of principal stretches

T
L L

L

=U R ΛR
Λ
R
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The deformation gradient, strain and stress tensors
• Decomposition of the deformation gradient

There is also:

:  Base vectors of principal stretches
         in the stationary coordinate system

T
E E

E

=V R ΛR
R

:    Principal stretches
:  Direction of principal stretches

T
L L

L

=U R ΛR
Λ
R
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The deformation gradient, strain and stress tensors

=X RU

0
1x

1
t x

We consider a bar under stretch and rotation

Decomposition (Ex 6.8)

L

2L

It is instructive to consider the 
deformation in two steps

Stretching

Rotation

0 1 0
1 0 0
0 0 1

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R

2 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

U
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The deformation gradient, strain and stress tensors
• Using the decomposition of the deformation gradient we may 

rewrite the right and left Cauchy-Green deformation tensors: 

2

2

The right Cauchy-Green deformation tensor:

The left Cauchy-Green deformation tensor:

T T

T T

= = =

= = =

C X X UR RU U

B XX VRR V V
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The deformation gradient, strain and stress tensors

• We now proceed from deformations to strains ☺

The strain may be understood as the stretch per unit length
why we can assess the strain through the inner product 
between two infinitesimal vectors before and after deformation

0 0 0 0 0 0
1 2 1 2 1 2 1 2

0 0
1 2

( ) ( )

( )

t td d d d d d d d

d d

− = −

=

x x x x X x X x x x

x C - I x

i i i i
i i

0 0 1 1
1 2 1 2 1 2 1 2

1
1 2

( ) ( )

( )

t t t t t t

t t

d d d d d d d d

d d

− −

−

− = −

=

x x x x x x X x X x

x I - B x

i i i i
i i

Green-Lagrange strain:

Almansi strain:

1 ( )
2

C - I

11 ( )
2

−−I B
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The deformation gradient, strain and stress tensors

• Lets see an example (one-dimensional)
We assume the following deformation gradient matrix

0 0

0 1 0 ;       i.e. pure stretch
0 0 1

l
L
⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

X

0 0 0 0 0 0
1 1 1 1 1 1 1 1

2
0 0

1 12

0 0 1 1
1 1 1 1

2

1 12

( ) ( )

( 1)  

or equivalently
( ) ( )

(1 )

t t

t t

t t

l ld d d d d d d d
L L

ld d
L

d d d d

Ld d
l

− −

− = −

=

= −

= −

x x x x x x x x

x - x

x x X x X x

x x

i i i i

i i

i i

i i
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The deformation gradient, strain and stress tensors

• Lets see an example (one-dimensional)

2

2

2

2

2 2 2

2 2

1Green-Lagrange strains:       ( 1)
2

1Almansi strains:                 (1 )
2

1 1 ( )for infinitesimal strains there is:  ( 1)
2 2

and                                              

l
L
L
l

l u L L u
L L L

=

= −

+ −
= ≈

E -

A

-

2 2 2

2 2

1 1 ( )(1 )
2 2

L u L L u u
l l l L

+ −
− = ≈ ≈
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The deformation gradient, strain and stress tensors

• We  now consider the tensor components of the strain tensors

1 
2

1
2

ji k k
ij i j i jo o o o

j i i i

ji k k
ij i j i jt t t t

j i i i

uu u u
x x x x

uu u u
x x x x

ε

α

⎧ ⎫∂∂ ∂ ∂⎪ ⎪= ⊗ = + + ⊗⎨ ⎬∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

⎧ ⎫∂∂ ∂ ∂⎪ ⎪= ⊗ = + + ⊗⎨ ⎬∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

ε e e e e

α e e e e

Green-Lagrange strains

Almansi strains
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The deformation gradient, strain and stress tensors

0 0 cos sin 0
cos sin 0

0 0 ;      sin cos 0 ;      = sin cos 0
0 0 1

0 0 0 0

l l h
L L H

h l h
H L H

h h
H H

θ θ
θ θ
θ θ θ θ

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
−⎡ ⎤⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

U R X

0
1 1, tx x

0
2 2, tx x

L

H

h

=X RU

Example – beam element

θ



Swiss Federal Institute of 
Technology

Page 29

Method of Finite Elements II

The deformation gradient, strain and stress tensors

Now we consider the velocity gradient tensor – the difference in 
velocity of two points infinitesimally close

O

xt

vt

vtd
v vt td+

vt

v L xt td d=

xtd

We can write change of velocity over space as a linear 
function of the distance in space

where L is given through the gradient of the velocity field 
at time t

xL v= ⊗∇ This is the velocity gradient tensor ☺
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The deformation gradient, strain and stress tensors

We remember that there is:

0x X xtd d=

which leads us to:

0

0

1

v X x

v LX x

L XX

t

t

d d

d d

−

=

⇓

=

⇓

=

O

xt

vt

vtd
v vt td+

vt

xtd

1 1( ) ( )
2 2

1 1( ) ( )
2 2

L D + W

D L + L + e e

deformation rate tensor

W L L e e

spin/rotation rate tensor

jT i
i j

j i

jT i
i j

j i

vv
x x

vv
x x

=
∂∂

= = ⊗
∂ ∂

∂∂
= − = − ⊗

∂ ∂

decomposition
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The deformation gradient, strain and stress tensors

And then we may derive the Green-Lagrange velocity 
strain tensor

O

xt

vt

vtd
v vt td+

vt

xtd
0 0ε X D Xt T t= 0 0D X ε XT

t t=

0 0 0 0
1 ( )
2

ε X X X Xt T t t T t= +

We could also just have differentiated the Green-Lagrange 
strain tensor with resect to time
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The deformation gradient, strain and stress tensors

Finally we need to establish the stresses 

We start by introducing the Cauchy stresses:

2e−

2 2t dS−

3e−

3 3t dS−

1e−
1 1t dS−

n ( )t n dS

Cauchy tetrahedron

( )

( )
1 1 2 2 3 3

t τn

t τ n τ n τ n

n

n

=

= + +

( )
1 11 12 13 1
( )
2 21 22 23 2
( )
3 31 32 33 3

n

n

n

t n
t n
t n

τ τ τ
τ τ τ
τ τ τ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

Cauchy stress tensor
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The deformation gradient, strain and stress tensors

Finally we introduce the second Piola-Kirchoff stresses:

these are so-called work conjugate to the Green-Lagrange 
strains

Rigid body motions do not induce strains/stresses 

the strain and stress tensors are invariant in regard to 
rotations

Worthwhile to consult Ex 6.14-6.15 ☺

0
0 0

0S X τ Xt t T
t tt

ρ
ρ

=
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The deformation gradient, strain and stress tensors

We remember that we set out to solve the following equation:

:  Cartesian components of the Cauchy stress tensor
1 ( ) strain tensor corresponding to virtual displacements
2

:  Components of virtua

t t

t t t t t t
t t ij

V

t t

ji
t t ij t t t t

j i

i

e d V R

uue
x x

u

τδ

τ
δδδ

δ

+Δ

+Δ +Δ +Δ
+Δ

+Δ

+Δ +Δ +Δ

=

∂∂
= + =

∂ ∂

∫

l displacement vector imposed at time 

:  Cartesian coordinate at time 

:  Volume at time 

t t t t
f

t t
i

t t

t t t t B t t t t S S t t
i i i i

V S

t t

x t t

V t t

R f u d V f u d Sδ δ
+Δ +Δ

+Δ

+Δ

+Δ +Δ +Δ +Δ +Δ

+ Δ

+ Δ

+ Δ

= +∫ ∫
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The deformation gradient, strain and stress tensors

We remember that we set out to solve the following equation:

t t

t t t t t t
t t ij

V

e d V Rτδ
+Δ

+Δ +Δ +Δ
+Δ =∫

Two schemes have been formulated for this namely:

The Total Lagrangian (TL) formulation

The Updated Lagrangian (UL) formulation

0

0
0 0

t t t t t t
ij ij

V

S d V Rδ ε
+Δ +Δ +Δ=∫

t t

t

t t t t t
t ij t ij

V

S d V Rδ ε
+Δ +Δ +Δ=∫
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The deformation gradient, strain and stress tensors

The resulting equations of motion for time t may be derived to:

The Total Lagrangian (TL) formulation

The Updated Lagrangian (UL) formulation

0 0 0

0 0 0
0 0 0 0 0 0 0

t tt t
ijrs rs ij ij ij ij ij

V V V

C e e d V S d V R S e d Vδ δ η δ+Δ+ = −∫ ∫ ∫

0
0

t t

t t

t t t t t
ijrs t rs t ij ij t ij ij t ij

V V V

C e e d V d V R e d Vδ τ δ η τ δ+Δ+ = −∫ ∫ ∫

Finally – in practice it is often sufficient to account for
only material non-linearity

In this case the TL and the UL formulations become
identical.
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