The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

Prof. Dr. Michael Havbro Faber
Swiss Federal Institute of Technology ETH Zurich, Switzerland

Contents of Today's Lecture

- Motivation, overview and organization of the course
- Introduction to non-linear analysis
- Formulation of the continuum mechanics incremental equations of motion

Motivation, overview and organization of the course

- Motivation

In FEM 1 we learned about the steady state analysis of linear systems
however;
the systems we are dealing with in structural engineering are generally not steady state and also not linear

We must be able to assess the need for a particular type of analysis and we must be able to perform it

Motivation, overview and organization of the course

- Motivation

What kind of problems are not steady state and linear?
E.g. when the:
material behaves non-linearly
deformations become big (p- Δ effects)
loads vary fast compared to the eigenfrequencies of the structure

General feature: Response becomes load path dependent

Motivation, overview and organization of the course

- Motivation

What is the "added value" of being able to assess the non-linear non-steady state response of structures?
E.g. assessing the

- structural response of structures to extreme events (rock-fall, earthquake, hurricanes)
- performance (failures and deformations) of soils
- verifying simple models

Motivation, overview and organization of the course

Steady state problems (Linear/Non-linear):
The response of the system does not change over time

$\mathbf{K U}=\mathbf{R}$

Propagation problems (Linear/Non-linear):
The response of the system changes over time

$$
\mathbf{M} \ddot{\mathbf{U}}(t)+\mathbf{C} \dot{\mathbf{U}}(t)+\mathbf{K} \mathbf{U}(t)=\mathbf{R}(t)
$$

Eigenvalue problems:
No unique solution to the response of the system

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{B} \mathbf{v}
$$

Motivation, overview and organization of the course

- Organisation

The lectures will be given by:

M. H. Faber

Exercises will be organized/attended by:

J. Qin

By appointment, HIL E13.1

Motivation, overview and organization of the course

- Organisation

PowerPoint files with the presentations will be uploaded on our homepage one day in advance of the lectures
http://www.ibk.ethz.ch/fa/education/FE_II

The lecture as such will follow the book:
"Finite Element Procedures" by K.J. Bathe, Prentice Hall, 1996

Motivation, overview and organization of the course

- Overview

Date	Pages	Subject
19.09.2008	485-502	Non-linear Finite Element Calculations in solids and structural mechanics - Introduction to non-linear calculations - The incremental approach to continuum mechanics
26.09.2008	502-528	Non-linear Finite Element Calculations in solids and structural mechanics Deformation gradients, strain and stress tensors The Langrangian formulation - only material non-linearity
03.10.2008	538-548	Non-linear Finite Element Calculations in solids and structural mechanics Displacement based iso-parametric finite elements in continuum mechanics
10.10.2008	548-560	Non-linear Finite Element Calculations in solids and structural mechanics Displacement based iso-parametric finite elements in continuum mechanics

Motivation, overview and organization of the course

- Overview

17.10.2008	561-578	Non-linear Finite Element Calculations in solids and structural mechanics - Total Langrangian formulation - Extended Langrangian formulation - Structural elements
24.10.2008	581-617	Non-linear Finite Element Calculations in solids and structural mechanics Introduction to constitutive relations Non-linear constitutive relations
31.10.2008	622-640	Non-linear Finite Element Calculations in solids and structural mechanics Contact problems Practical considerations
07.11.2008	768-784	$\begin{array}{ll}\text { Dynamical Finite Element Calculations } \\ - & \text { Introduction } \\ - & \text { Direct integration methods }\end{array}$

Motivation, overview and organization of the course

- Overview

14.11.2008	785-800	Dynamical Finite Element Calculations - Mode superposition
21.11.2008	801-815	Dynamical Finite Element Calculations
		Analysis of direct integration methods
28.11.2008	824-830	Dynamical Finite Element Calculations
		Solution of dynamical non-linear problems
05.12.2008	887-910	Solution of Eigen value problems
		The vector iteration method
12.12.2008	911-937	Solution of Eigen value problems
		The transformation method
19.12.2008		Introduction to FEM-software

Introduction to non-linear analysis

- Previously we considered the solution of the following linear and static problem:

$$
\mathbf{K U}=\mathbf{R}
$$

for these problems we have the convenient property of linearity, i.e.:

$$
\begin{aligned}
& \mathbf{K} \mathbf{U}^{*}=\lambda \mathbf{R} \\
& \Downarrow \\
& \mathbf{U}^{*}=\lambda \mathbf{U}
\end{aligned}
$$

If this is not the case we are dealing with a non-linear problem!

Introduction to non-linear analysis

- Previously we considered the solution of the following linear and static problem:
$\mathbf{K U}=\mathbf{R}$
we assumed:
small displacements when developing the stiffness matrix K and the load vector R, because we performed all integrations over the original element volume
that the B matrix is constant independent of element displacements
the stress-strain matrix C is constant
boundary constraints are constant

Introduction to non-linear analysis

- Classification of non-linear analysis

Type of analysis	Description	Typical formulation used	Stress and strain measures used		
Materially-nonlinear only	Infinitesimal displacements and strains; stress train relation is non- linear	Materially- nonlinear-only (MNO)	Engineering strain and stress		
Large displacements, large rotations but small strains	Displacements and rotations of fibers are large; but fiber extensions and angle changes between fibers are small; stress strain relationship may be linear or non-linear	Total Lagrange (TL) (UL)	Second Piola- Kirchoff stress, Green-Lagrange strain		
Large displacements, large rotations and large strains	Displacements and rotations of fibers are large; fiber extensions and angle changes between fibers may also be large; stress strain relationship may be linear or non-linear	Total Lagrange (TL)	Cauchy stress, Almansi strain		
(UL)				\quad	Second Piola-
:---					
Kirchoff stress,					
Green-Lagrange					
strain	\(\left	-\begin{array}{l}Cauchy stress, 			

Logarithmic strain\end{array}\right|\)

Introduction to non-linear analysis

- Classification of non-linear analysis

Linear elastic (infinitesimal displacements)

Introduction to non-linear analysis

- Classification of non-linear analysis

Introduction to non-linear analysis

Large displacements and large rotations but small strains (linear or nonlinear material behavior)

Introduction to non-linear analysis

- Classification of non-linear analysis

Large displacements and large rotations and large strains (linear or nonlinear material behavior)

Introduction to non-linear analysis

- Classification of non-linear analysis

Changing boundary conditions

Introduction to non-linear analysis

- Example: Simple bar structure

$$
\varepsilon_{Y}=0.002
$$

Introduction to non-linear analysis

- Example: Simple bar structure

$$
\begin{aligned}
& { }^{t} \varepsilon_{a}=\frac{{ }^{t} u}{L_{a}},{ }^{t} \varepsilon_{b}=-\frac{{ }^{t} u}{L_{b}} \\
& { }^{t} R+{ }^{t} \sigma_{b} A={ }^{t} \sigma_{a} A \\
& { }^{t} \varepsilon=\frac{{ }^{t} \sigma}{E} \text { (elastic region) }
\end{aligned}
$$

$$
{ }^{t} \varepsilon=\varepsilon_{Y}+\frac{{ }^{t} \sigma-\sigma_{Y}}{E_{T}} \text { (plastic region) } \quad \Delta \varepsilon=\frac{\Delta \sigma}{E} \text { (unloading) }
$$

Introduction to non-linear analysis

- Example: Simple bar structure

$$
\begin{aligned}
& { }^{t} \varepsilon_{a}=\frac{{ }^{t} u}{L_{a}},{ }^{t} \varepsilon_{b}=-\frac{{ }^{t} u}{L_{b}} \\
& { }^{t} R+{ }^{t} \sigma_{b} A={ }^{t} \sigma_{a} A \\
& { }^{t} \varepsilon=\frac{{ }^{t} \sigma}{E} \text { (elastic region) } \\
& { }^{t} \varepsilon=\varepsilon_{Y}+\frac{{ }^{t} \sigma-\sigma_{Y}}{E_{T}} \text { (plastic region) } \\
& \Delta \varepsilon=\frac{\Delta \sigma}{E} \text { (unloading) }
\end{aligned}
$$

Both sections elastic

$$
\begin{aligned}
& { }^{t} R=E A^{t} u\left(\frac{1}{L_{a}}+\frac{1}{L_{b}}\right) \Rightarrow{ }^{t} u=\frac{{ }^{t} R}{3 \cdot 10^{6}} \\
& \sigma_{a}=\frac{{ }^{t} R}{3 A}, \sigma_{b}=-\frac{2}{3} \frac{{ }^{t} R}{A}
\end{aligned}
$$

Introduction to non-linear analysis

- Example: Simple bar structure

$$
\begin{aligned}
& { }^{t} \varepsilon_{a}=\frac{{ }^{t} u}{L_{a}}, \varepsilon_{b}=-\frac{{ }^{t} u}{L_{b}} \\
& { }^{t} R+{ }^{t} \sigma_{b} A={ }^{t} \sigma_{a} A \\
& { }^{t} \mathcal{E}=\frac{{ }^{t} \sigma}{E} \text { (elastic region) } \\
& { }^{t} \mathcal{E}=\varepsilon_{Y}+\frac{{ }^{t} \sigma-\sigma_{Y}}{E_{T}} \text { (plastic region) } \\
& \Delta \varepsilon=\frac{\Delta \sigma}{E} \text { (unloading) }
\end{aligned}
$$

Section \mathbf{a} is elastic while section \mathbf{b} is plastic

section ${ }_{t_{u}}$ will be plastic when ${ }^{t_{u}} R=\frac{3}{2} \sigma_{Y} A$
$\sigma_{a}=E \frac{{ }^{t} u}{L_{a}}, \sigma_{b}=E_{T}\left(\frac{{ }^{t} u}{L_{b}}-\varepsilon_{Y}\right)-\sigma_{Y}$
${ }^{t} R=\frac{E A^{t} u}{L_{a}}+\frac{E_{T} A^{t} u}{L_{b}}-E_{T} \varepsilon_{Y} A+\sigma_{Y} A \Rightarrow$
${ }^{t} u=\frac{{ }^{t} R / A+E_{T} \varepsilon_{Y}-\sigma_{Y}}{E / L_{a}+E / L_{b}}=\frac{{ }^{t} R}{1.02 \cdot 10^{6}}-1.9412 \cdot 10^{-2}$

Introduction to non-linear analysis

- What did we learn from the example?

The basic problem in general nonlinear analysis is to find a state of equilibrium between externally applied loads and element nodal forces

$$
\begin{aligned}
& { }^{t} \mathbf{R}-{ }^{t} \mathbf{F}=0 \\
& { }^{t} \mathbf{R}={ }^{t} \mathbf{R}_{B}+{ }^{t} \mathbf{R}_{S}+{ }^{t} \mathbf{R}_{C} \\
& { }^{t} \mathbf{F}={ }^{t} \mathbf{R}_{I} \\
& { }^{t} \mathbf{F}=\sum_{m} \int_{V^{(m)}}{ }^{t} \mathbf{B}^{(m) T} \tau^{(m) t} d V^{(m)}
\end{aligned}
$$

We must achieve equilibrium for all time steps when incrementing the loading

Very general approach
includes implicitly also dynamic analysis!

Introduction to non-linear analysis

- The basic approach in incremental anaylsis is
${ }^{t+\Delta t} \mathbf{R}-{ }^{t+\Delta t} \mathbf{F}=0$
assuming that ${ }^{t+\Delta t} \mathbf{R}$ is independent of the deformations we have
${ }^{t+\Delta t} \mathbf{F}={ }^{t} \mathbf{F}+\mathbf{F}$
We know the solution ${ }^{t} F$ at time t and F is the increment in the nodal point forces corresponding to an increment in the displacements and stresses from time t to time $t+\Delta t$ this we can approximate by
$\mathbf{F}={ }^{t} \mathbf{K} \mathbf{U}$
\dagger
Tangent stiffness matrix $\quad{ }^{t} \mathbf{K}=\frac{\partial^{t} \mathbf{F}}{\partial^{t} \mathbf{U}}$

Introduction to non-linear analysis

- The basic approach in incremental anaylsis is

We may now substitute the tangent stiffness matrix into the equlibrium relation

```
't}\mathbf{KU}=\mp@subsup{}{}{t+\Deltat}\mathbf{R}-\mp@subsup{}{}{t}\mathbf{F
\Downarrow
*+\Deltat}\mathbf{U}=\mp@subsup{}{}{t}\mathbf{U}+\mathbf{U
```

which gives us a scheme for the calculation of the displacements
the exact displacements at time $t+\Delta t$ correspond to the applied loads at $\boldsymbol{t}+\Delta \boldsymbol{t}$ however we only determined these approximately as we used a tangent stiffness matrix - thus we may have to iterate to find the solution

Introduction to non-linear analysis

- The basic approach in incremental anaylsis is

We may use the Newton-Raphson iteration scheme to find the equlibrium within each load increment

$$
\begin{aligned}
& { }^{t+\Delta t} \mathbf{K}^{(i-1)} \Delta \mathbf{U}^{(i)}={ }^{t+\Delta t} \mathbf{R}-{ }^{t+\Delta t} \mathbf{F}^{(i-1)} \quad \text { (out of balance load vector) } \\
& { }^{t+\Delta t} \mathbf{U}^{(i)}={ }^{t+\Delta t} \mathbf{U}^{(i-1)}+\Delta \mathbf{U}^{(i)} \\
& \text { with initial conditions } \\
& { }^{t+\Delta t} \mathbf{U}^{(0)}={ }^{t} \mathbf{U} ; \quad{ }^{t+\Delta t} \mathbf{K}^{(0)}={ }^{t} \mathbf{K} ; \quad{ }^{t+\Delta t} \mathbf{F}^{(0)}={ }^{t} \mathbf{F}
\end{aligned}
$$

Introduction to non-linear analysis

- The basic approach to incremental analysis is

It may be expensive to calculate the tangent stiffness matrix and;
in the Modified Newton-Raphson iteration scheme it is thus only calculated in the beginning of each new load step
in the quasi-Newton iteration schemes the secant stiffness matrix is used instead of the tangent matrix

The continuum mechanics incremental equations

- The basic problem:

We want to establish the solution using an incremental formulation

The equilibrium must be established for the considered body in ist current configuration

In proceeding we adopt a Lagrangian formulation where track the movement of all particles of the body (located in a Cartesian coordinate system)

Another approach would be an Eulerian formulation where the motion of material through a stationary control volume is considered

The continuum mechanics incremental equations

- The basic problem:

The continuum mechanics incremental equations

- The Lagrangian formulation

We express equilibrium of the body at time $\boldsymbol{t + \Delta t}$ using the principle of virtual displacements
$\int_{{ }^{+}+\Delta_{V}}{ }^{t+\Delta t} \tau \delta_{t+\Delta t} e_{i j} d^{t+\Delta t} V={ }^{t+\Delta t} R$

${ }^{t+\Delta t} \tau$: Cartesian components of the Cauchy stress tensor
$\delta_{t+\Delta t} e_{i j}=\frac{1}{2}\left(\frac{\partial \delta u_{i}}{\partial^{t+\Delta t} x_{j}}+\frac{\partial \delta u_{j}}{\partial^{t+\Delta t} x_{i}}\right)=$ strain tensor corresponding to virtual displacements
δu_{i} : Components of virtual displacement vector imposed at time $t+\Delta t$
${ }^{t+\Delta t} x_{i}$: Cartesian coordinate at time $t+\Delta t$
${ }^{t+\Delta t} V$: Volume at time $t+\Delta t$
${ }^{t+\Delta t} R=\int_{{ }^{t+\Delta^{t}} V}{ }^{t+\Delta t} f_{i}^{B} \delta u_{i} d^{t+\Delta t} V=\int_{t+\Delta S_{S}}{ }^{t+\Delta t} f_{i}^{S} \delta u_{i}^{S} d^{t+\Delta t} S$

The continuum mechanics incremental equations

- The Lagrangian formulation

We express equilibrium of the body at time $\boldsymbol{t + \Delta t}$ using the principle of virtual displacements

where
${ }^{t+\Delta t} f_{i}^{B}$: externally applied forces per unit volume
${ }^{t+\Delta t} f_{i}^{S}$: externally applied surface tractions per unit surface
${ }^{t+\Delta t} S_{f}$: surface at time $t+\Delta t$
$\delta u_{i}^{S}: \delta u_{i}$ evaluated at the surface ${ }^{t+\Delta t} S_{f}$

The continuum mechanics incremental equations

- The Lagrangian formulation

We recognize that our derivations from linear finite element theory are unchanged - but applied to the body in the configuration at time $\boldsymbol{t}+\Delta \boldsymbol{t}$

The continuum mechanics incremental equations

- In the further we introduce an appropriate notation:

Coordinates and displacements are related as:
${ }^{t} x_{i}={ }^{0} x_{i}+{ }^{t} u_{i}$
${ }^{t+\Delta t} x_{i}={ }^{0} x_{i}+{ }^{t+\Delta t} u_{i}$
Increments in displacements are related as:
${ }_{t} u_{i}={ }^{t+\Delta t} u_{i}-{ }^{t} u_{i}$
Reference configurations are indexed as e.g.:
${ }^{t+\Delta t}{ }_{0} f_{i}^{S}$ where the lower left index indicates the reference configuration

$$
{ }^{t+\Delta t} \tau_{i j}={ }_{t+\Delta t}^{t+\Delta t} \tau_{i j}
$$

Differentiation is indexed as:

$$
{ }_{0}^{t+\Delta t} u_{i, j}=\frac{\partial^{t+\Delta t} u_{i}}{\partial^{0} x_{j}}, \quad{ }_{t+\Delta t}^{0} x_{m, n}=\frac{\partial^{0} x_{m}}{\partial^{t+\Delta t} x_{n}}
$$

