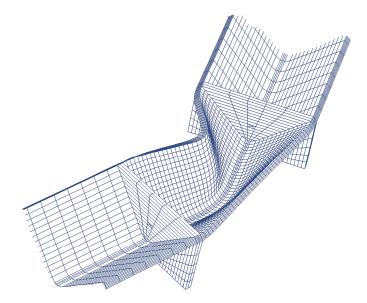


The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems



Prof. Dr. Michael Havbro Faber Swiss Federal Institute of Technology ETH Zurich, Switzerland Page 1

Contents of Today's Lecture

- Motivation, overview and organization of the course
- Introduction to non-linear analysis
- Formulation of the continuum mechanics incremental equations of motion

Motivation

In FEM 1 we learned about the steady state analysis of linear systems

however;

the systems we are dealing with in structural engineering are generally not steady state and also not linear

We must be able to assess the need for a particular type of analysis and we must be able to perform it

• Motivation

What kind of problems are not steady state and linear?

E.g. when the:

material behaves non-linearly

deformations become big (p- Δ effects)

loads vary fast compared to the eigenfrequencies of the structure

General feature: Response becomes load path dependent

• Motivation

What is the "added value" of being able to assess the non-linear non-steady state response of structures ?

- E.g. assessing the
- structural response of structures to extreme events (rock-fall, earthquake, hurricanes)
- performance (failures and deformations) of soils
- verifying simple models

 $\mathbf{K}\mathbf{U} = \mathbf{R}$

Motivation, overview and organization of the course

Steady state problems (Linear/Non-linear):

The response of the system does not change over time

Propagation problems (Linear/Non-linear):

The response of the system changes over time $M\ddot{U}(t) + C\dot{U}(t) + KU(t) = R(t)$

Eigenvalue problems:

No unique solution to the response of the system $Av = \lambda Bv$

Organisation

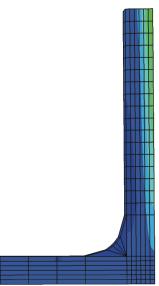
The lectures will be given by:

M. H. Faber

Exercises will be organized/attended by:

J. Qin

By appointment, HIL E13.1



Organisation

PowerPoint files with the presentations will be uploaded on our homepage one day in advance of the lectures

http://www.ibk.ethz.ch/fa/education/FE_II

The lecture as such will follow the book:

"Finite Element Procedures" by K.J. Bathe, Prentice Hall, 1996

• Overview

Date 19.09.2008	Pages 485-502	Subject Non-linear Finite Element Calculations in solids and structural mechanics - Introduction to non-linear calculations - The incremental approach to continuum mechanics
26.09.2008	502-528	 Non-linear Finite Element Calculations in solids and structural mechanics Deformation gradients, strain and stress tensors The Langrangian formulation – only material non-linearity
03.10.2008	538-548	Non-linear Finite Element Calculations in solids and structural mechanics - Displacement based iso-parametric finite elements in continuum mechanics
10.10.2008	548-560	Non-linear Finite Element Calculations in solids and structural mechanics - Displacement based iso-parametric finite elements in continuum mechanics

Overview

17.10.2008 561-578 Non-linear Finite Element Calculations in solids and structural mechanics Total Langrangian formulation Extended Langrangian formulation -Structural elements Non-linear Finite Element Calculations in solids and structural mechanics 24.10.2008 581-617 Introduction to constitutive relations Non-linear constitutive relations Non-linear Finite Element Calculations in solids and structural mechanics 31.10.2008 622-640 Contact problems Practical considerations 07.11.2008 768-784 Dynamical Finite Element Calculations Introduction Direct integration methods

• Overview

14.11.2008	785-800	Dynamical Finite Element Calculations - Mode superposition
21.11.2008	801-815	Dynamical Finite Element Calculations - Analysis of direct integration methods
28.11.2008	824-830	Dynamical Finite Element Calculations - Solution of dynamical non-linear problems
05.12.2008	887-910	Solution of Eigen value problems - The vector iteration method
12.12.2008	911-937	Solution of Eigen value problems - The transformation method
19.12.2008		Introduction to FEM-software

• Previously we considered the solution of the following linear and static problem:

 $\mathbf{K}\mathbf{U} = \mathbf{R}$

for these problems we have the convenient property of linearity, i.e.:

 $\mathbf{K}\mathbf{U}^* = \lambda \mathbf{R}$ \bigcup $\mathbf{U}^* = \lambda \mathbf{U}$

If this is not the case we are dealing with a non-linear problem!

• Previously we considered the solution of the following linear and static problem:

 $\mathbf{K}\mathbf{U} = \mathbf{R}$

we assumed:

small displacements when developing the stiffness matrix K and the load vector R, because we performed all integrations over the original element volume

that the B matrix is constant independent of element displacements

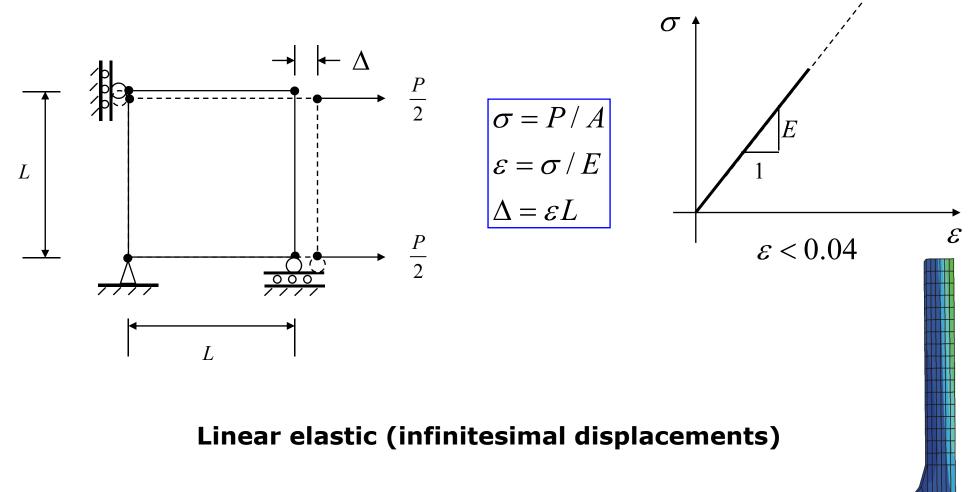
the stress-strain matrix C is constant

boundary constraints are constant

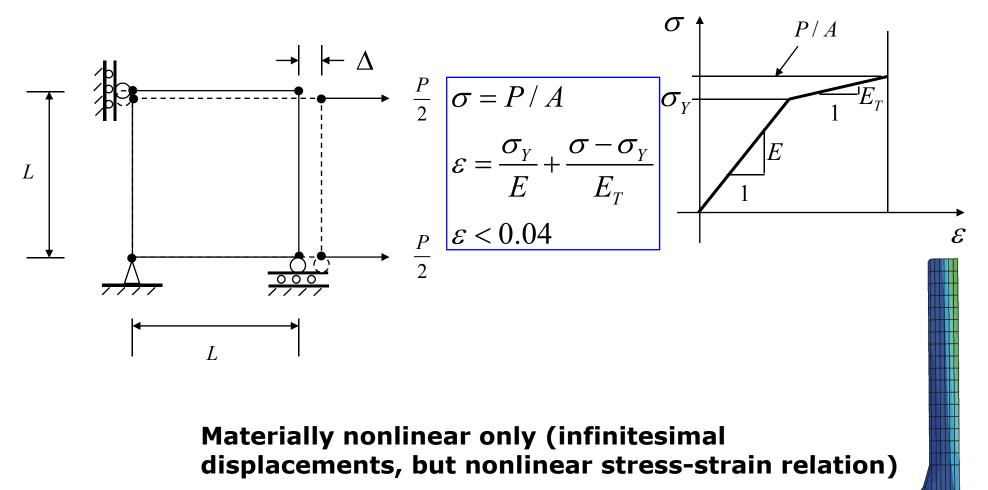
• Classification of non-linear analysis

Type of analysis	Description	Typical formulation used	Stress and strain measures used
Materially-nonlinear only	Infinitesimal displacements and strains; stress train relation is non- linear	Materially- nonlinear-only (MNO)	Engineering strain and stress
Large displacements, large rotations but small strains	Displacements and rotations of fibers are large; but fiber extensions and angle changes between fibers are small; stress strain relationship may be linear or non-linear	Total Lagrange (TL) Updated Lagrange (UL)	Second Piola- Kirchoff stress, Green-Lagrange strain Cauchy stress, Almansi strain
Large displacements, large rotations and large strains	Displacements and rotations of fibers are large; fiber extensions and angle changes between fibers may also be large; stress strain relationship may be linear or non-linear	Total Lagrange (TL) Updated Lagrange (UL)	Second Piola- Kirchoff stress, Green-Lagrange strain Cauchy stress, Logarithmic strain

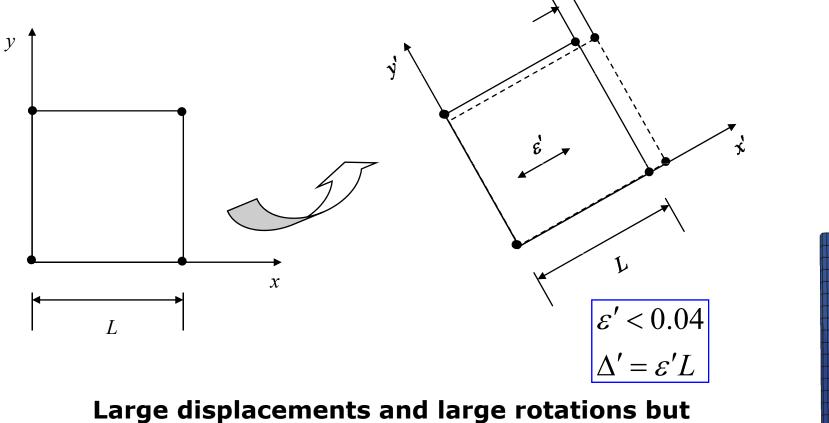
Classification of non-linear analysis



Classification of non-linear analysis

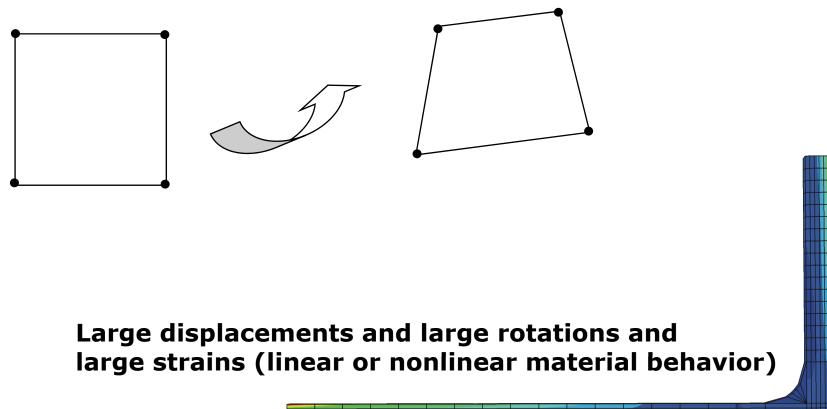


Classification of non-linear analysis

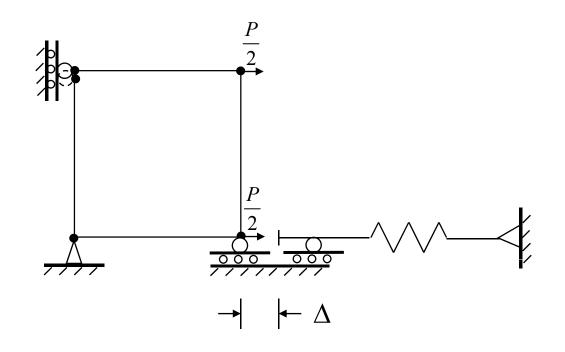


small strains (linear or nonlinear material behavior)

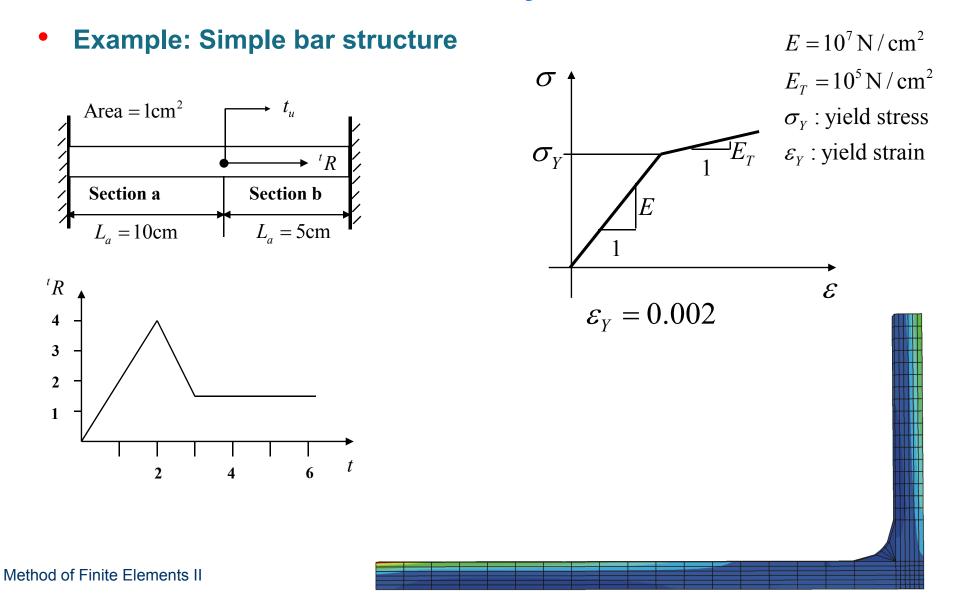
• Classification of non-linear analysis

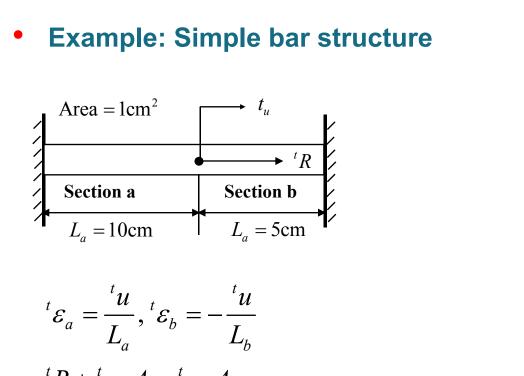


Classification of non-linear analysis



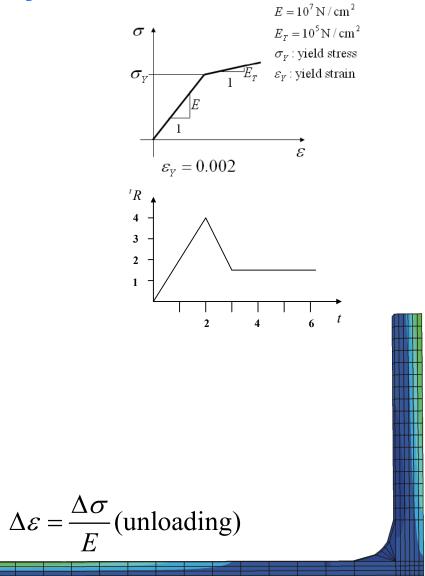
Changing boundary conditions

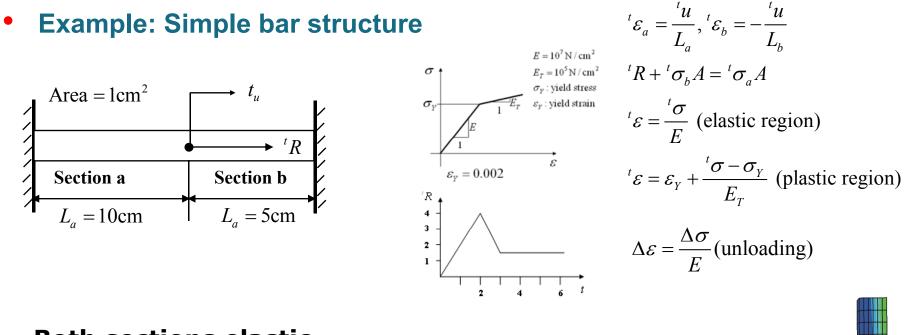




$${}^{t}\varepsilon = \frac{{}^{t}\sigma}{E}$$
 (elastic region)

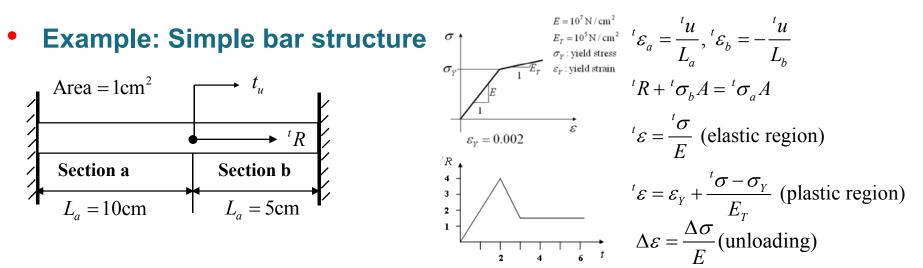
$${}^{t}\varepsilon = \varepsilon_{Y} + \frac{{}^{t}\sigma - \sigma_{Y}}{E_{T}}$$
 (plastic region)





Both sections elastic

$${}^{t}R = EA^{t}u(\frac{1}{L_{a}} + \frac{1}{L_{b}}) \Longrightarrow {}^{t}u = \frac{{}^{t}R}{3 \cdot 10^{6}}$$
$$\sigma_{a} = \frac{{}^{t}R}{3A}, \sigma_{b} = -\frac{2}{3}\frac{{}^{t}R}{A}$$



Section a is elastic while section b is plastic

section b will be plastic when
$${}^{t^*}R = \frac{3}{2}\sigma_Y A$$

 $\sigma_a = E \frac{{}^{t}u}{L_a}, \sigma_b = E_T(\frac{{}^{t}u}{L_b} - \varepsilon_Y) - \sigma_Y$
 ${}^{t}R = \frac{EA{}^{t}u}{L_a} + \frac{E_TA{}^{t}u}{L_b} - E_T\varepsilon_Y A + \sigma_Y A \Rightarrow$
 ${}^{t}u = \frac{{}^{t}R/A + E_T\varepsilon_Y - \sigma_Y}{E/L_a + E/L_b} = \frac{{}^{t}R}{1.02 \cdot 10^6} - 1.9412 \cdot 10^{-2}$

• What did we learn from the example?

The basic problem in general nonlinear analysis is to find a state of equilibrium between externally applied loads and element nodal forces

$${}^{t}\mathbf{R} - {}^{t}\mathbf{F} = 0$$

$${}^{t}\mathbf{R} = {}^{t}\mathbf{R}_{B} + {}^{t}\mathbf{R}_{S} + {}^{t}\mathbf{R}_{C}$$

$${}^{t}\mathbf{F} = {}^{t}\mathbf{R}_{I}$$
$${}^{t}\mathbf{F} = \sum_{m} \int_{{}^{t}V^{(m)}} {}^{t}\mathbf{B}^{(m)T} {}^{t}\tau^{(m)} {}^{t}dV^{(m)}$$

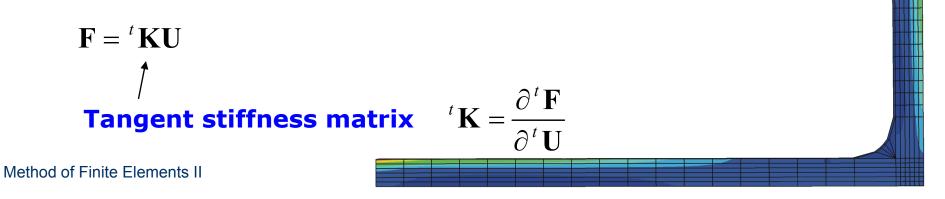
includes implicitly also dynamic analysis!

• The basic approach in incremental anaylsis is

 $^{t+\Delta t}\mathbf{R}-^{t+\Delta t}\mathbf{F}=0$

assuming that ${}^{t+\Delta t}\mathbf{R}$ is independent of the deformations we have ${}^{t+\Delta t}\mathbf{F} = {}^{t}\mathbf{F} + \mathbf{F}$

We know the solution ^tF at time t and F is the increment in the nodal point forces corresponding to an increment in the displacements and stresses from time t to time t+ Δ t this we can approximate by



• The basic approach in incremental anaylsis is

We may now substitute the tangent stiffness matrix into the equibrium relation

$${}^{t}\mathbf{K}\mathbf{U} = {}^{t+\Delta t}\mathbf{R} - {}^{t}\mathbf{F}$$

$$\downarrow \downarrow$$

$${}^{t+\Delta t}\mathbf{U} = {}^{t}\mathbf{U} + \mathbf{U}$$

which gives us a scheme for the calculation of the displacements

the exact displacements at time $t+\Delta t$ correspond to the applied loads at $t+\Delta t$ however we only determined these approximately as we used a tangent stiffness matrix – thus we may have to iterate to find the solution

• The basic approach in incremental anaylsis is

We may use the Newton-Raphson iteration scheme to find the equibrium within each load increment

 $^{t+\Delta t}\mathbf{K}^{(i-1)}\Delta \mathbf{U}^{(i)} = {}^{t+\Delta t}\mathbf{R} - {}^{t+\Delta t}\mathbf{F}^{(i-1)}$ (out of balance load vector)

$$^{t+\Delta t}\mathbf{U}^{(i)} = {}^{t+\Delta t}\mathbf{U}^{(i-1)} + \Delta\mathbf{U}^{(i)}$$

with initial conditions

$$^{t+\Delta t}\mathbf{U}^{(0)} = {}^{t}\mathbf{U}; \quad {}^{t+\Delta t}\mathbf{K}^{(0)} = {}^{t}\mathbf{K}; \quad {}^{t+\Delta t}\mathbf{F}^{(0)} = {}^{t}\mathbf{F}$$

• The basic approach to incremental analysis is

It may be expensive to calculate the tangent stiffness matrix and;

in the Modified Newton-Raphson iteration scheme it is thus only calculated in the beginning of each new load step

in the **quasi-Newton** iteration schemes the secant stiffness matrix is used instead of the tangent matrix

• The basic problem:

We want to establish the solution using an incremental formulation

The equilibrium must be established for the considered body in ist current configuration

In proceeding we adopt a Lagrangian formulation where track the movement of all particles of the body (located in a Cartesian coordinate system)

Another approach would be an Eulerian formulation where the motion of material through a stationary control volume is considered

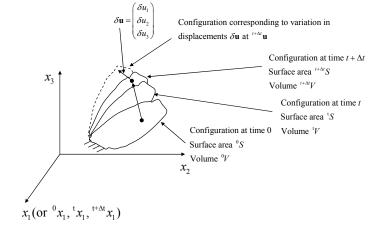
The continuum mechanics incremental equations

The basic problem: δu_1 δu_2 $\delta \mathbf{u} =$ Configuration corresponding to variation in δu_{3} displacements $\delta \mathbf{u}$ at $t^{t+\Delta t}\mathbf{u}$ Configuration at time $t + \Delta t$ Surface area $t + \Delta t S$ x_3 Volume ${}^{t+\Delta t}V$ Configuration at time t Surface area ${}^{t}S$ Configuration at time 0 Volume VSurface area ${}^{0}S$ Volume ${}^{0}V$ X_2 $x_1(\text{ or }^{0}x_1, {}^{t}x_1, {}^{t+\Delta t}x_1)$

• The Lagrangian formulation

We express equilibrium of the body at time $t+\Delta t$ using the principle of virtual displacements

$$\int_{t+\Delta t_V} t+\Delta t \tau \delta_{t+\Delta t} e_{ij} d^{t+\Delta t} V = t+\Delta t R$$



 $t^{t+\Delta t}\tau$: Cartesian components of the Cauchy stress tensor

 $\delta_{t+\Delta t} e_{ij} = \frac{1}{2} \left(\frac{\partial \delta u_i}{\partial^{t+\Delta t} x_j} + \frac{\partial \delta u_j}{\partial^{t+\Delta t} x_i} \right) = \text{strain tensor corresponding to virtual displacements}$

 δu_i : Components of virtual displacement vector imposed at time $t + \Delta t$

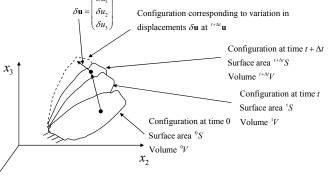
 $t^{t+\Delta t}x_i$: Cartesian coordinate at time $t + \Delta t$

 $^{t+\Delta t}V$: Volume at time $t + \Delta t$

$${}^{t+\Delta t}R = \int_{t+\Delta t_V} {}^{t+\Delta t}f_i^B \delta u_i d^{t+\Delta t}V = \int_{t+\Delta t_{S_f}} {}^{t+\Delta t}f_i^S \delta u_i^S d^{t+\Delta t}S$$

• The Lagrangian formulation

We express equilibrium of the body at time $t+\Delta t$ using the principle of virtual displacements



Page 32

$${}^{t+\Delta t}R = \int_{t+\Delta t_V} {}^{t+\Delta t}f_i^B \delta u_i d^{t+\Delta t}V = \int_{t+\Delta t_{S_f}} {}^{t+\Delta t}f_i^S \delta u_i^S d^{t+\Delta t}S^{\left(x_1, t_1, t+\Delta t_1\right)}$$

where

 f_{i}^{F} : externally applied forces per unit volume f_{i}^{F} : externally applied surface tractions per unit surface f_{i}^{F} : surface at time $t + \Delta t$ δu_{i}^{S} : δu_{i} evaluated at the surface f_{i}^{F}

• The Lagrangian formulation

We recognize that our derivations from linear finite element theory are unchanged – but applied to the body in the configuration at time $t+\Delta t$

• In the further we introduce an appropriate notation:

Coordinates and displacements are related as:

$${}^{t}x_{i} = {}^{0}x_{i} + {}^{t}u_{i}$$
$${}^{t+\Delta t}x_{i} = {}^{0}x_{i} + {}^{t+\Delta t}u_{i}$$

Increments in displacements are related as:

$$_{t}u_{i}={}^{t+\Delta t}u_{i}-{}^{t}u_{i}$$

Reference configurations are indexed as e.g.:

 ${}^{t+\Delta t}_{0}f_{i}^{S}$ where the lower left index indicates the reference configuration

$$^{t+\Delta t}\tau_{ij} = {}^{t+\Delta t}_{t+\Delta t}\tau_{ij}$$

Differentiation is indexed as:

$${}^{t+\Delta t}_{0}u_{i,j} = \frac{\partial^{t+\Delta t}u_i}{\partial^{0}x_j}, \qquad {}^{0}_{t+\Delta t}x_{m,n} = \frac{\partial^{0}x_m}{\partial^{t+\Delta t}x_n}$$