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Solution Methods for Eigenproblems

Four groups of solution methods:

• Vector Iteration

• Transformation methods

• Polynomial iteration techniques

• Using the Sturm sequence property of characteristic

polynomials

λ=KΦ MΦ

i i iλ=KΦ MΦ



Inverse Iteration

We usually use as a start vector

We assume that K is pd and                 .

And by evaluating for k = 1, 2,…
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Inverse Iteration

Provided that

If l is the last iteration, we end up having

… the first eigenpair!
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Forward Iteration

Only thing that changes: we
assume M to be pd and
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Forward Iteration

Provided that

and if l is again the last iteration, we have

…the last eigenpair!
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Convergence Measures

In both iteration procedures the convergence is measured by

Where tol is usually some decimals, e.g. 1e-8
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Example 11.4

Use forward iteration with tol = 1e-6 to evaluate λ4 and Φ4 of the
eigenproblem , whereλ=KΦ MΦ
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Example 11.4

Using the starting vector

Using MATLAB, we get the following fourth eigenpair…
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Shifting in Vector Iteration

Improving convergence rate?
What when M and K are not pd?

Applying a shift μ:
( )μ η− =K M Φ MΦ



Example 11.5

Use inverse iteration in order to calculate (λ1, Φ1) of the problem
, where K and M are given in Example 11.4. Then

impose a shift μ = 10 and show that in the inverse iteration
convergence occurs toward (λ4, Φ4). Use again a tolerance of 1e-6.

λ=KΦ MΦ



Example 11.5

After three iterations we get for the first eigenpair…

Then imposing a shift of μ = 10, we obtain…

15 4 1 0
4 14 4 1

1 4 4 4
0 1 4 5

μ

− −⎛ ⎞
⎜ ⎟− − −⎜ ⎟− =
⎜ ⎟− − −
⎜ ⎟⎜ ⎟− −⎝ ⎠

K M



Example 11.5

Using now again the inverse iteration on the problem

we obtain convergence after six iterations and get…

( )μ η− =K M Φ MΦ



Example 11.5

Since we imposed a shift, we know:
- is approximation to an eigenvalue
- is approximation to the corresponding eigenvector

We do not know:
- which eigenpair is approximated

Solution here: by comparing with Example 11.4, we see that we have the
fourth eigenpair.

In case that no other example is available: Do not choose shift arbitrarliy, use
e.g. Rayleigh Quotient Iteration. (Bathe 11.2.4)
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Gram-Schmidt Orthogonalization

Orthogonalize starting vector to eigenvectors already calculated

→ Convergence occurs only to other eigenvectors

Suppose:
- Calculated are eigenvectors
- Now M-orthogonalize x1 to these eigenvectors (deflate x1)

where
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Gram-Schmidt Orthogonalization

In inverse iteration is now used as a starting vector instead of     .  

Convergence occurs now to eigenpair (λm+1, Φm+1), which is unknown
yet.

1x 1x



Example 11.8

Calculate, using Gram-Schmidt orthogonalization, an appropriate
starting iteration vector for the solution of the problem , 
where K and M are given in Example 11.4. Assume that the
eigenpairs (λ1, Φ1) and (λ4, Φ4), are known as obtained in Example
11.5 and that convergence to another eigenpair is sought. 

λ=KΦ MΦ



Example 11.8

Deflate unit full vector of the known eigenvectors:

where the α‘s are obtained by

Substituting the values obtained in Example 11.5 leads us to…
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Example 11.8

So we finally end up having…

Thank you for your attention.
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