Solution of dynamic non-linear problems

Example 9.12.

Natalie Germann

Prof. M. H. Faber, Chair of Risk and Safety, Institute of Structural Engineering, ETH Zurich.

Time integration methods

1. Explicit methods:

- Solution of equilibrium equations at time $t+\Delta t$
- No factorization of stiffness matrix
- Conditional stability
- E.g. central difference method

2. Implicit methods:

- Solution for equilibrium equations at time t
- Factorization of stiffness matrix
- Unconditional stability
- E.g. Newmark method, Wilson θ method

Stability

Stability of an integration method means that numerical errors present in the solution for any initial conditions do not amplify during the integration.

Let be $\rho(\mathbf{A})$ be the spectral radius defined as

$$
\begin{equation*}
\rho(\mathbf{A})=\max _{i=1,2, \cdots}\left|\lambda_{i}\right| . \tag{1}
\end{equation*}
$$

Stability criterion (SC):

1) If all eigenvalues of \mathbf{A} are distinct, we must have $\rho(\mathbf{A}) \leqslant 1$.
2) If \mathbf{A} contains multiple eigenvalues, we require that all eigenvalues be (in modulus) smaller than 1.

A time integration method is

- conditional stable if SC holds for any initial conditions and any time step $\Delta t \leq \Delta t_{\text {crit }}$.
- unconditional stable if SC holds for any initial conditions and any time step Δt.

Fig. 1 Spectral radius of approximation operators, case $\xi=0.0$ (from Bathe [1996]).

Accuracy

Initial value problem:

$$
\begin{equation*}
\ddot{x}+\omega x=0 \text { with }{ }^{0} x=1.0 ; \quad{ }^{0} \dot{x}=0.0 ; \quad{ }^{0} \ddot{x}=-\omega^{2} . \tag{2}
\end{equation*}
$$

Fig. 2 Percentage period elongations and amplitude decays (from Bathe [1996]).

Example 9.12

Analyze the central difference method for its integration stability. Assume that damping effects can be neglected.

Recursive relationship for solution vector:

$$
\begin{align*}
& {\left[\begin{array}{c}
{ }^{t+\Delta t} x \\
{ }^{t} x
\end{array}\right]=\mathbf{A}\left[\begin{array}{c}
{ }^{t} x \\
{ }^{t-\Delta t} x
\end{array}\right]} \tag{3}\\
& \text { where } \mathbf{A}=\left[\begin{array}{cc}
2-\omega^{2} \Delta t^{2} & -1 \\
1 & 0
\end{array}\right] . \tag{4}
\end{align*}
$$

Eigenvalue problem: $\mathbf{A u}=\lambda \mathbf{u}$

Characteristic equation:

$$
\begin{equation*}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left(2-\omega^{2} \Delta t^{2}-\lambda\right)(-\lambda)+1=0 . \tag{5}
\end{equation*}
$$

Eigenvalues:

$$
\begin{align*}
& \lambda_{1}=\frac{2-\omega^{2} \Delta t^{2}}{2}+\sqrt{\frac{\left(2-\omega^{2} \Delta t^{2}\right)^{2}}{4}-1} \tag{6}\\
& \lambda_{2}=\frac{2-\omega^{2} \Delta t^{2}}{2}-\sqrt{\frac{\left(2-\omega^{2} \Delta t^{2}\right)^{2}}{4}-1} \tag{7}
\end{align*}
$$

SC is satisfied for $\Delta t / T \leqslant 1 / \pi$. Hence, the central difference method is stable provided that $\Delta t \leq \Delta t_{\text {crit }}$, where $\Delta t_{c r i t} \leqslant T / \pi$.

