Probabilistic Assessment of the Robustness of Structural Systems

Matthias Schubert

Institute of Structural Engineering IBK
Chair of Risk and Safety
ETH - Zurich
Introduction

- Robustness is generally accepted as a characteristic of a good system design
- Objective quantification of robustness is needed
- A risk-based method for measuring robustness is proposed here
- Robustness is interpreted here as damage tolerance:
 “the consequences of structural failure should not be disproportional to the effect causing the failure”
Introduction

Desirable properties for a measure of robustness:

- General applicable to systems
- Allows for ranking of alternative systems
- Provides a criterion for identifying acceptable robustness
Framework

\[I_{Rob} = Direct\ Risk + Indirect\ Risk \]

Robustness is related to:

- Redundancy
- Ductility
- Reliability
- Behavior after damage
- Consequences
The Index of Robustness

• Dependent upon the probability of damage occurrence
• Dependent upon consequences
• Depend upon the exposure
• Dependent upon post damage actions
• Is more than a characteristic of the structure
Effect of deterioration on the robustness

- Endogenous or exogenous effects might reduce the resistance over time
- The probability of failure and the probability of damage changes in time
- Intuitively, the robustness decreases over time
Effect of deterioration on the robustness

Structural System

- Parallel system with ten members
- Structural components are perfectly ductile
- Uniform redistribution of the load
- Marginal component failure probability 10^{-3}
- Initial resistance $\sim \text{LN}(1.715, \text{CoV}=0.07)$
- Time dependent degradation function (Faber and Melchers, 2001)

\[R(t) = R_0 \cdot \psi(t_a) \]
Effect of deterioration on the robustness

Exposure

- Dead load \(\sim N(0.3, \text{Cov}=0.1) \)
- Live load \(\sim W(0.7, \text{Cov}=0.3) \)

Consequences

- Damage consequences for a single component is equal to one
- Failure consequences are 100 times the damage consequences
Effect of deterioration on the robustness

- Initial system is highly redundant
- The system seems to be robust
- The robustness decreases rapidly over time
- High robustness of the initial system compared to deteriorated system
Effect of deterioration on the robustness

\[
l_{Rob}(t) = \sum_i P_{D,i}(t) \cdot C_{Dir} \approx \frac{P_{D,1}(t) \cdot C_{Dir}}{P_{D,1}(t) \cdot C_{Dir} + P_F(t) \cdot C_{Ind}} = \frac{C_{Dir}}{C_{Dir} + \frac{P_F(t)}{P_{D,1}(t) \cdot C_{Ind}}}
\]

- Deterioration leads to a disproportional increase of the failure probability
Effect of inspections and repair actions

- High deterioration is assumed
- Inspection every 25 years
- Perfect repair actions are assumed
Effect of inspections and repair actions

- Repair and maintenance actions can increase the robustness
- The robustness can be kept above a certain level
- Robustness calculations can help to identify repair and maintenance strategies.
Conclusions

- The framework is based on risk assessment and decision theory
- The index of robustness facilitates the quantification of robustness
- It allows for the implementation of different mitigation measures over the life time of structural systems
- By implementing inspection and repair actions the robustness of a system can be controlled
- Further research is necessary to develop factors for a code based design including direct and indirect consequences.
Probabilistic Assessment of the Robustness of Structural Systems

Matthias Schubert

Thank you for your attention